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Introduction

“Reflections on life and death of those who in Breslau lived and died”
is the title of a manuscript that Protestant pastor Caspar Neumann sent to
mathematician Gottfried Wilhelm Leibniz in the late 17th century. Neumann
had spent years keeping track of births and deaths in his Polish hometown
now called Wrocław. Unlike sprawling cities like London or Paris, Breslau
had a rather small and stable population with limited migration in and out.
The parishes in town took due record of the newly born and deceased.

Neumann’s goal was to find patterns in the occurrence of births and
deaths. He thereby sought to dispel a persisting superstition that ascribed
critical importance to certain climacteric years of age. Some believed it was
age 63, others held it was either the 49th or the 81st year, that particularly
critical events threatened to end the journey of life. Neumann recognized
that his data defied the existence of such climacteric years.

Leibniz must have informed the Royal Society of Neumann’s work. In
turn, the Society invited Neumann in 1691 to provide the Society with
the data he had collected. It was through the Royal Society that British
astronomer Edmund Halley became aware of Neumann’s work. A friend
of Isaac Newton’s, Halley had spent years predicting the trajectories of
celestial bodies, but not those of human lives.

After a few weeks of processing the raw data through smoothing and
interpolation, it was in the Spring of 1693 that Halley arrived at what
became known as Halley’s life table.

At the outset, Halley’s table displayed for each year of age, the number
of people of that age alive in Breslau at the time. Halley estimated that a
total of approximately 34000 people were alive, of which approximately
1000 were between the ages zero and one, 855 were between age one and
two, and so forth.

Halley saw multiple applications of his table. One of them was to
estimate the proportion of men in a population that could bear arms. To
estimate this proportion he computed the number of people between age 18

and 56, and divided by two. The result suggested that 26% of the population
were men neither too old nor too young to go to war.

At the same time, King William III of England needed to raise money
for his country’s continued involvement in the Nine Years War raging from
1688 to 1697. In 1692, William turned to a financial innovation imported
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Figure 1: Halley’s life table

from Holland, the public sale of life annuities. A life annuity is a financial
product that pays out a predetermined annual amount of money while the
purchaser of the annuity is alive. The king had offered annuities at fourteen
times the annual payout, a price too low for the young and too high for the
old.

Halley recognized that his table could be used to estimate the odds that
a person of a certain age would die within the next year. Based on this
observation, he described a formula for pricing an annuity that, expressed
in modern language, computes the sum of expected discounted payouts
over the course of a person’s life starting from their current age.

Ambitions of the 20th century

Halley had stumbled upon the fact that prediction requires no physics.
Unknown outcomes, be they future or unobserved, often follow patterns
found in past observations. This empirical law would become the basis of
consequential decision making for centuries to come.

On the heels of Halley and his contemporaries, the 18th century saw
the steady growth of the life insurance industry. The industrial revolution
fueled other forms of insurance sold to a population seeking safety in
tumultuous times. Corporations and governments developed risk models of
increasing complexity with varying degrees of rigor. Actuarial science and
financial risk assessment became major fields of study built on the empirical
law.

Modern statistics and decision theory emerged in the late 19th and early

2



20th century. Statisticians recognized that the scope of the empirical law
extended far beyond insurance pricing, that it could be a method for both
scientific discovery and decision making writ large.

Emboldened by advances in probability theory, statisticians modeled
populations as probability distributions. Attention turned to what a scien-
tist could say about a population by looking at a random draw from its
probability distribution. From this perspective, it made sense to study how
to decide between one of two plausible probability models for a population
in light of available data. The resulting concepts, such as true positive and
false positive, as well as the resulting technical repertoire, are in broad use
today as the basis of hypothesis testing and binary classification.

As statistics flourished, two other developments around the middle of the
20th century turned out to be transformational. The works of Turing, Gödel,
and von Neumann, alongside dramatic improvements in hardware, marked
the beginning of the computing revolution. Computer science emerged as a
scientific discipline. General purpose programmable computers promised a
new era of automation with untold possibilities.

World War II spending fueled massive research and development pro-
grams on radar, electronics, and servomechanisms. Established in 1940, the
United States National Defense Research Committee, included a division
devoted to control systems. The division developed a broad range of control
systems, including gun directors, target predictors, and radar-controlled
devices. The agency also funded theoretical work by mathematician Norbert
Wiener, including plans for an ambitious anti-aircraft missile system that
used statistical methods for predicting the motion of enemy aircraft.

In 1948, Wiener released his influential book Cybernetics at the same
time as Shannon released A Mathematical Theory of Communication. Both
proposed theories of information and communication, but their goals were
different. Wiener’s ambition was to create a new science, called cybernetics,
that unified communications and control in one conceptual framework.
Wiener believed that there was a close analogy between the human nervous
system and digital computers. He argued that the principles of control,
communication, and feedback could be a way not only to create mind-
like machines, but to understand the interaction of machines and humans.
Wiener even went so far as to posit that the dynamics of entire social systems
and civilizations could be understood and steered through the organizing
principles of cybernetics.

The zeitgeist that animated cybernetics also drove ambitions to create
artificial neural networks, capable of carrying out basic cognitive tasks.
Cognitive concepts such as learning and intelligence had entered research
conversations about computing machines and with it came the quest for
machines that learn from experience.
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The 1940s were a decade of active research on artificial neural networks,
often called connectionism. A 1943 paper by McCulloch and Pitts formal-
ized artificial neurons and provided theoretical results about the universality
of artificial neural networks as computing devices. A 1949 book by Don-
ald Hebb pursued the central idea that neural networks might learn by
constructing internal representations of concepts.

Pattern classification

Around the mid 1950s, it seemed that progress on connectionism had
started to slow and would have perhaps tapered off had psychologist Frank
Rosenblatt not made a striking discovery.

Rosenblatt had devised a machine for image classification. Equipped
with 400 photosensors the machine could read an image composed of 20 by
20 pixels and sort it into one of two possible classes. Mathematically, the
Perceptron computes a linear function of its input pixels. If the value of
the linear function applied to the input image is positive, the Perceptron
decides that its input belongs to class 1, otherwise class -1. What made
the Perceptron so successful was the way it could learn from examples.
Whenever it misclassified an image, it would adjust the coefficients of its
linear function via a local correction.

Rosenblatt observed in experiments what would soon be a theorem. If a
sequence of images could at all be perfectly classified by a linear function,
the Perceptron would only make so many mistakes on the sequence before
it correctly classified all images it encountered.

Rosenblatt developed the Perceptron in 1957 and continued to publish
on the topic in the years that followed. The Perceptron project was funded
by the US Office of Naval Research, who jointly announced the project with
Rosenblatt in a press conference in 1958, that led to the New York Times to
exclaim:

The Navy revealed the embryo of an electronic computer that it
expects will be able to walk, talk, see, write, reproduce itself and
be conscious of its existence.1

This development sparked significant interest in perceptrons and rein-
vigorated neural networks research throughout the 1960s. By all accounts,
the research in the decade that followed Rosenblatt’s work had essentially
all the ingredients of what is now called machine learning, specifically,
supervised learning.

Practitioners experimented with a range of different features and model
architectures, moving from linear functions to Perceptrons with multiple
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layers, the equivalent of today’s deep neural networks. A range of variations
to the optimization method and different ways of propagating errors came
and went.

Theory followed closely behind. Not long after the invention came a
theorem, called mistake bound, that gave an upper bound on the number
of mistakes the Perceptron would make in the worst case on any sequence
of labeled data points that can be fit perfectly with a linear separator.

Today, we recognize the Perceptron as an instance of the stochastic
gradient method applied to a suitable objective function. The stochastic
gradient method remains the optimization workhorse of modern machine
learning applications.

Shortly after the well-known mistake bound came a lesser known the-
orem. The result showed that when the Perceptron succeeded in fitting
training data, it would also succeed in classifying unseen examples correctly
provided that these were drawn from the same distribution as the training
data. We call this generalization: Finding rules consistent with available data
that apply to instances we have yet to encounter.

By the late 1960s, these ideas from perceptrons had solidified into a
broader subject called pattern recognition that knew most of the concepts
we consider core to machine learning today. In 1939, Wald formalized the
basic problem of classification as one of optimal decision making when
the data is generated by a known probabilistic model. Researchers soon
realized that pattern classification could be achieved using data alone to
guide prediction methods such as perceptrons, nearest neighbor classifiers,
or density estimators. The connections with mathematical optimization
including gradient descent and linear programming also took shape during
the 1960s.

Pattern classification—today more popularly known as supervised learning—
built on statistical tradition in how it formalized the idea of generalization.
We assume observations come from a fixed data generating process, such as,
samples drawn from a fixed distribution. In a first optimization step, called
training, we fit a model to a set of data points labeled by class membership.
In a second step, called testing, we judge the model by how well it performs
on newly generated data from the very same process.

This notion of generalization as performance on fresh data can seem
mundane. After all, it simply requires the classifier to do, in a sense, more of
the same. We require consistent success on the same data generating process
as encountered during training. Yet the seemingly simple question of what
theory underwrites the generalization ability of a model has occupied the
machine learning research community for decades.
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Pattern classification, once again

Machine learning as a field, however, is not a straightforward evolution
of the pattern recognition of the 1960s, at least not culturally and not
historically.

After a decade of perceptrons research, a group of influential researchers,
including McCarthy, Minsky, Newell, and Simon put forward a research
program by the name of artificial intelligence. The goal was to create human-
like intelligence in a machine. Although the goal itself was in many ways
not far from the ambitions of connectionists, the group around McCarthy
fancied entirely different formal techniques. Rejecting the numerical pattern
fitting of the connectionist era, the proponents of this new discipline saw
the future in symbolic and logical manipulation of knowledge represented
in formal languages.

Artificial intelligence became the dominant academic discipline to deal
with cognitive capacities of machines within the computer science commu-
nity. Pattern recognition and neural networks research continued, albeit
largely outside artificial intelligence. Indeed, journals on pattern recognition
flourished during the 1970s.

During this time, artificial intelligence research led to a revolution in
expert systems, logic and rule based models that had significant industrial
impact. Expert systems were hard coded and left little room for adapt-
ing to new information. AI researchers interested in such adaptation and
improvement—learning, if you will—formed their own subcommunity, be-
ginning in 1981 with the first International Workshop on Machine Learning.
The early work from this community reflects the logic-based research that
dominated artificial intelligence at the time; the papers read as if of a dif-
ferent field than what we now recognize as machine learning research. It
was not until the late 1980s that machine learning began to look more like
pattern recognition, once again.

Personal computers had made their way from research labs into home
offices across wealthy nations. Internet access, if slow, made email a popular
form of communication among researchers. File transfer over the internet
allowed researchers to share code and datasets more easily.

Machine learning researchers recognized that in order for the discipline
to thrive it needed a way to more rigorously evaluate progress on concrete
tasks. Whereas in the 1950s it had seemed miraculous enough if training
errors decreased over time on any non-trivial task, it was clear now that
machine learning needed better benchmarks.

In the late 1980s, the first widely used benchmarks emerged. Then grad-
uate student David Aha created the UCI machine learning repository that
made several datasets widely available via FTP. Aiming to better quantify
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the performance of AI systems, the Defense Advanced Research Projects
Agency (DARPA) funded a research program on speech recognition that
led to the creation of the influential TIMIT speech recognition benchmark.

These benchmarks had the data split into two parts, one called training
data, one called testing data. This split elicits the promise that the learning
algorithm must only access the training data when it fits the model. The
testing data is reserved for evaluating the trained model. The research
community can then rank learning algorithms by how well the trained
models perform on the testing data.

Splitting data into training and testing sets was an old practice, but the
idea of reusing such datasets as benchmarks was novel and transformed
machine learning. The dataset-as-benchmark paradigm caught on and became
core to applied machine learning research for decades to come. Indeed,
machine learning benchmarks were at the center of the most recent wave
of progress on deep learning. Chief among them was ImageNet, a large
repository of images, labeled by nouns of objects displayed in the images. A
subset of roughly 1 million images belonging to 1000 different object classes
was the basis of the ImageNet Large Scale Visual Recognition Challenge.
Organized from 2010 until 2017, the competition became a striking showcase
for performance of deep learning methods for image classification.

Increases in computing power and volume of available data were a key
driving factor for progress in the field. But machine learning benchmarks
did more than to provide data. Benchmarks gave researchers a way to
compare results, share ideas, and organize communities. They implicitly
specified a problem description and a minimal interface contract for code.
Benchmarks also became a means of knowledge transfer between industry
and academia.

The most recent wave of machine learning as pattern classification was
so successful, in fact, that it became the new artificial intelligence in the
public narrative of popular media. The technology reached entirely new
levels of commercial significance with companies competing fiercely over
advances in the space.

This new artificial intelligence had done away with the symbolic rea-
soning of the McCarthy era. Instead, the central drivers of progress were
widely regarded as growing datasets, increasing compute resources, and
more benchmarks along with publicly available code to start from. Are
those then the only ingredients needed to secure the sustained success of
machine learning in the real world?
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Prediction and action

Unknown outcomes often follow patterns found in past observations. But
what do we do with the patterns we find and the predictions we make? Like
Halley proposing his life table for annuity pricing, predictions only become
useful when they are acted upon. But going from patterns and predictions
to successful actions is a delicate task. How can we even anticipate the
effect of a hypothetical action when our actions now influence the data we
observe and value we accrue in the future?

One way to determine the effect of an action is experimentation: try it
out and see what happens. But there’s a lot more we can do if we can model
the situation more carefully. A model of the environment specifies how an
action changes the state of the world, and how in turn this state results in a
gain or loss of utility. We include some aspects of the environment explicitly
as variables in our model. Others we declare exogenous and model as noise
in our system.

The solution of how to take such models and turn them into plans of
actions that maximize expected utility is a mathematical achievement of the
20th century. By and large, such problems can be solved by dynamic program-
ming. Initially formulated by Bellman in 1954, dynamic programming poses
optimization problems where at every time step, we observe data, take an
action, and pay a cost. By chaining these together in time, elaborate plans
can be made that remain optimal under considerable stochastic uncertainty.
These ideas revolutionized aerospace in the 1960s, and are still deployed
in infrastructure planning, supply chain management, and the landing of
SpaceX rockets. Dynamic programming remains one of the most important
algorithmic building blocks in the computer science toolkit.

Planning actions under uncertainty has also always been core to artificial
intelligence research, though initial proposals for sequential decision making
in AI were more inspired by neuroscience than operations research. In 1950-
era AI, the main motivating concept was one of reinforcement learning, which
posited that one should encourage taking actions that were successful in the
past. This reinforcement strategy led to impressive game-playing algorithms
like Samuel’s Checkers Agent circa 1959. Surprisingly, it wasn’t until
the 1990s that researchers realized that reinforcement learning methods
were approximation schemes for dynamic programming. Powered by
this connection, a mix of researchers from AI and operations research
applied neural nets and function approximation to simplify the approximate
solution of dynamic programming problems. The subsequent 30 years have
led to impressive advances in reinforcement learning and approximate
dynamic programming techniques for playing games, such as Go, and in
powering dexterous manipulation in robotic systems.
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Central to the reinforcement learning paradigm is understanding how
to balance learning about an environment and acting on it. This balance
is a non-trivial problem even in the case where actions do not lead to a
change in state. In the context of machine learning, experimentation in the
form of taking an action and observing its effect often goes by the name
exploration. Exploration reveals the payoff of an action, but it comes at the
expense of not taking an action that we already knew had a decent payoff.
Thus, there is an inherent tradeoff between exploration and exploitation of
previous actions. Though in theory, the optimal balance can be computed by
dynamic programming, it is more common to employ techniques from bandit
optimization that are simple and effective strategies to balance exploration
and exploitation.

Not limited to experimentation, causality is a comprehensive concep-
tual framework to reason about the effect of actions. Causal inference,
in principle, allows us to estimate the effect of hypothetical actions from
observational data. A growing technical repertoire of causal inference is
taking various sciences by storm as witnessed in epidemiology, political
science, policy, climate, and development economics.

There are good reasons that many see causality as a promising avenue
for making machine learning methods more robust and reliable. Current
state-of-the-art predictive models remain surprisingly fragile to changes
in the data. Even small natural variations in a data-generating process
can significantly deteriorate performance. There is hope that tools from
causality could lead to machine learning methods that perform better under
changing conditions.

However, causal inference is no panacea. There are no causal insights
without making substantive judgments about the problem that are not
verifiable from data alone. The reliance on hard earned substantive domain
knowledge stands in contrast with the nature of recent advances in machine
learning that largely did without—and that was the point.

Chapter notes

Halley’s life table has been studied and discussed extensively; for an entry
point, see recent articles by Bellhouse2 and Ciecka,3 or the article by Pearson
and Pearson.4

Halley was not the first to create a life table. In fact, what Halley created
is more accurately called a population table. Instead, John Grount deserves
credit for the first life table in 1662 based on mortality records from London.
Considered to be the founder of demography and an early epidemiologist,
Grount’s work was in many ways more detailed than Halley’s fleeting
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engagement with Breslau’s population. However, to Grount’s disadvantage
the mortality records released in London at the time did not include the age
of the deceased, thus complicating the work significantly.

Mathematician de Moivre picked up Halley’s life table in 1725 and
sharpened the mathematical rigor of Halley’s idea. A few years earlier, de
Moivre had published the first textbook on probability theory called “The
Doctrine of Chances: A Method of Calculating the Probability of Events in
Play”. Although de Moivre lacked the notion of a probability distribution,
his book introduced an expression resembling the normal distribution as
an approximation to the Binomial distribution, what was in effect the first
central limit theorem. The time of Halley coincides with the emergence of
probability. Hacking’s book provides much additional context, particularly
relevant are Chapter 12 and 13.5

For the history of feedback, control, and computing before cybernetics,
see the excellent text by Mindell.6 For more on the cybernetics era itself,
see the books by Kline7 and Heims.8 See Beniger9 for how the concepts of
control and communication and the technology from that era lead to the
modern information society.

The prologue from the 1988 edition of Perceptrons by Minsky and Papert
presents a helpful historical perspective. The recent 2017 reprint of the same
book contains additional context and commentary in a foreword by Léon
Bottou.

Much of the first International Workshop on Machine Learning was
compiled in an edited volume, which summarizes the motivations and
perspectives that seeded the field.10 Langley’s article provides helpful
context on the state of evaluation in machine learning in the 1980s and
how the desire for better metrics led to a renewed emphasis on pattern
recognition.11 Similar calls for better evaluation motivated the speech
transcription program at DARPA, leading to the TIMIT dataset, arguably
the first machine learning benchmark dataset.12, 13, 14

It is worth noting that the Parallel Distributed Processing Research Group
led by Rummelhart and McLeland actively worked on neural networks dur-
ing the 1980s and made extensive use of the rediscovered back-propagation
algorithm, an efficient algorithm for computing partial derivatives of a
circuit.15

A recent article by Jordan provides an insightful perspective on how the
field came about and what challenges it still faces.16
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