
6

Generalization

Simply put, generalization relates the performance of a model on seen
examples to its performance on unseen examples. In this chapter, we dis-
cuss the interplay between representation, optimization, and generalization,
again focusing on models with more parameters than seen data points.
We examine the intriguing empirical phenomena related to overparam-
eterization and generalization in today’s machine learning practice. We
then review available theory—some old and some emerging—to better
understand and anticipate what drives generalization performance.

Generalization gap

Recall, the risk of a predictor f : X → Y with respect to a loss func-
tion loss : Y × Y → R is defined as

R[f] = E [loss(f (X), Y)] .

Throughout this chapter, it will often be convenient to stretch the notation
slightly by using loss(f , (x, y)) to denote the loss of a predictor f on an
example (x, y) . For predictors specified by model parameters w, we’ll also
write loss(w, (x, y)) .

For the purposes of this chapter, it makes sense to think of the n samples
as an ordered tuple

S = ((x1, y1), , (xn, yn)) ∈ (X ×Y)n .

The empirical risk RS[f] is, as before,

RS[f] =
1
n

n

∑
i=1

loss(f (xi), yi) .

Empirical risk minimization seeks to find a predictor f ∗ in a specified
class F that minimizes the empirical risk:

RS[f ∗] = min
f∈F

RS[f]

1

In machine learning practice, the empirical risk is often called training error
or training loss, as it corresponds to the loss achieved by some optimization
method on the sample. Depending on the optimization problem, we may
not be able to find an exact empirical risk minimizer and it may not be
unique.

Empirical risk minimization is commonly used as a proxy for minimizing
the unknown population risk. But how good is this proxy? Ideally, we
would like that the predictor f we find via empirical risk minimization
satisfies RS[f] ≈ R[f]. However, this may not be the case, since the risk R[f]
captures loss on unseen example, while the empirical risk RS[f] captures
loss on seen examples.

Generally, we expect to do much better on seen examples than unseen
examples. This performance gap between seen and unseen examples is
what we call generalization gap.

Definition 1. Define the generalization gap of a predictor f with respect to a
dataset S as

∆gen(f) = R[f]− RS[f] .

This quantity is sometimes also called generalization error or excess risk.
Recall the following tautological, yet important identity:

R[f] = RS[f] + ∆gen(f)

What it says is that if we manage to make the empirical risk RS[f] small
through optimization, then all that remains to worry about is generalization
gap.

The last chapter provided powerful tools to make optimization succeed.
How we can bound the generalization gap is the topic of this chapter. We
first take a tour of evidence from machine learning practice for inspiration.

Overparameterization: empirical phenomena

We previously experienced the advantages of overparameterized models
in terms of their ability to represent complex functions and our ability to
feasily optimize them. The question remains whether they generalize well
to unseen data. Perhaps we simply kicked the can down the road. Does the
model size that was previously a blessing now come back to haunt us? We
will see that not only do large models often generalize well in practice, but
often more parameters lead to better generalization performance. Model
size does, however, challenge some theoretical analysis. The empirical
evidence will orient our theoretical study towards dimension-free bounds
that avoid worst-case analysis.

2

Complexity of model class

R
is

k

overfittingunderfitting

risk
empirical risk

Figure 1: Traditional view of generalization

Effects of model complexity

Think of a model family with an associated measure of complexity, such
as number of trainable parameters. Suppose that for each setting of the
complexity measure, we can solve the empirical risk minimization problem.
We can then plot what happens to risk and empirical risk as we vary model
complexity.

A traditional view of generalization posits that as we increase model
complexity initially both empirical risk and risk decrease. However, past a
certain point the risk begins to increase again, while empirical risk decreases.

The graphic shown in many textbooks is a u-shaped risk curve. The
complexity range below the minimum of the curve is called underfitting.
The range above is called overfitting.

This picture is often justified using the bias-variance trade-off, motivated
by a least squares regression analysis. However, it does not seem to bear
much resemblance to what is observed in practice.

We have already discussed the example of the Perceptron which achieves
zero training loss and still generalizes well in theory. Numerous practi-
tioners have observed that other complex models also can simultaneously
achieve close to zero training loss and still generalize well. Moreover, in
many cases risk continues to decreases as model complexity grows and
training data are interpolated exactly down to (nearly) zero training loss.
This empirical relationship between overparameterization and risk appears
to be robust and manifests in numerous model classes, including overpa-
rameterized linear models, ensemble methods, and neural networks.

In the absence of regularization and for certain model families, the
empirical relationship between model complexity and risk is more accu-
rately captured by the double descent curve in the figure above. There is

3

Complexity of model class

R
is

k

overparameterized

underparameterized
risk
empirical risk

Figure 2: Double descent.

Complexity of model class

R
is

k

overparameterized

underparameterized

risk
empirical risk

Figure 3: Single descent.

an interpolation threshold at which a model of the given complexity can
fit the training data exactly. The complexity range below the threshold is
the underparameterized regime, while the one above is the overparameterized
regime. Increasing model complexity in the overparameterized regime
continues to decrease risk indefinitely, albeit at decreasing marginal returns,
toward some convergence point.

The double descent curve is not universal. In many cases, in practice we
observe a single descent curve throughout the entire complexity range. In
other cases, we can see multiple bumps as we increase model complexity.1

However, the general point remains. There is no evidence that highly
overparameterized models do not generalize. Indeed, empirical evidence
suggests larger models not only generalize, but that larger models make
better out-of-sample predictors than smaller ones.2, 3

4

Optimization versus generalization

Training neural networks with stochastic gradient descent, as is commonly
done in practice, attempts to solve a non-convex optimization problem.
Reasoning about non-convex optimization is known to be difficult. Theo-
reticians see a worthy goal in trying to prove mathematically that stochastic
gradient methods successfully minimize the training objective of large artifi-
cial neural networks. The previous chapter discussed some of the progress
that has been made toward this goal.

It is widely believed that what makes optimization easy crucially de-
pends on the fact that models in practice have many more parameters than
there are training points. While making optimization tractable, overparame-
terization puts burden on generalization.

We can force a disconnect between optimization and generalization in a
simple experiment that we will see next. One consequence is that even if a
mathematical proof established the convergence guarantees of stochastic
gradient descent for training some class of large neural networks, it would
not necessarily on its own tell us much about why the resulting model
generalizes well to the test objective.

Indeed, consider the following experiment. Fix training data (x1, y1), . . . , (xn, yn)
and fix a training algorithm A that achieves zero training loss on these data
and achieves good test loss as well.

Now replace all the labels y1, . . . , yn by randomly and independently
drawn labels ỹ1, . . . , ỹn . What happens if we run the same algorithm on the
training data with noisy labels (x1, ỹ1), . . . , (xn, ỹn))?

One thing is clear. If we choose from k discrete classes, we expect the
model trained on the random labels to have no more than 1/k test accuracy,
that is, the accuracy achieved by random guessing. After all, there is no
statistical relationship between the training labels and the test labels that
the model could learn.

What is more interesting is what happens to optimization. The left
panel of the figure shows the outcome of this kind of randomization test
on the popular CIFAR-10 image classification benchmark for a standard
neural network architecture. What we can see is that the training algorithm
continues to drive the training loss to zero even if the labels are randomized.
The right panel shows that we can vary the amount of randomization to
obtain a smooth degradation of the test error. At full randomization, the
test error degrades to 90%, as good as guessing one of the 10 classes. The
figure shows what happens to a specific model architecture, called Incep-
tion, but similar observations hold for most, if not all, overparameterized
architectures that have been proposed.

The randomization experiment shows that optimization continues to

5

Figure 4: Randomization test on CIFAR-10. Left: How randomization affects
training loss. Right: How increasing the fraction of corrupted training labels
affects test error.

work well even when generalization performance is no better than random
guessing, i.e., 10% accuracy in the case of the CIFAR-10 benchmark that
has 10 classes. The optimization method is moreover insensitive to proper-
ties of the data, since it works even on random labels. A consequence of
this simple experiment is that a proof of convergence for the optimization
method may not reveal any insights into the nature of generalization.

The diminished role of explicit regularization

Regularization plays an important role in the theory of convex empirical
risk minimization. The most common form of regularization used to be `2-
regularization corresponding to adding a scalar of the squared Euclidean
norm of the parameter vector to the objective function.

A more radical form of regularization, called data augmentation, is com-
mon in the practice of deep learning. Data augmentation transforms each
training point repeatedly throughout the training process by some operation,
such as a random crop of the image. Training on such randomly modified
data points is meant to reduce overfitting, since the model never encounters
the exact same data point twice.

Regularization continues to be a component of training large neural
networks in practice. However, the nature of regularization is not clear. We
can see a representative empirical observation in the table below.

6

Table 1: The training and test accuracy (in percent-
age) with and without data augmentation and `2-
regularization.

params random crop `2-regularization train accuracy test accuracy

1,649,402 yes yes 100.0 89.05

yes no 100.0 89.31

no yes 100.0 86.03

no no 100.0 85.75

The table shows the performance of a common neural model architecture,
called Inception, on the standard CIFAR-10 image classification benchmark.
The model has more than 1.5 million trainable parameters, even though
there are only 50, 000 training examples spread across 10 classes. The
training procedure uses two explicit forms of regularization. One is a form
of data augmentation with random crops. The other is `2-regularization.
With both forms of regularization the fully trained model achieves close
to 90% test accuracy. But even if we turn both of them off, the model
still achieves close to 86% test accuracy (without even readjusting any
hyperparameters such as learning rate of the optimizer). At the same time,
the model fully interpolates the training data in the sense of making no
errors whatsoever on the training data.

These findings suggest that while explicit regularization may help gener-
alization performance, it is by no means necessary for strong generalization
of heavily overparameterized models.

Theories of generalization

With these empirical facts in hand, we now turn to mathematical theories
that might help explain what we observe in practice and also may guide
future empirical and theoretical work. In the remainder of the chapter, we
tour several different, seemingly disconnected views of generalization.

We begin with a deep dive into algorithmic stability, which posits that gen-
eralization arises when models are insensitive to perturbations in the data
on which they are trained. We then discuss VC dimension and Rademacher
complexity, which show how small generalization gaps can arise when we
restrict the complexity of models we wish to fit to data. We then turn to
margin bounds which assert that whenever the data is easily separable, good
generalization will occur. Finally we discuss generalization bounds that
arise from optimization, showing how choice of an algorithmic scheme itself
can yield models with desired generalization properties.

7

In all of these cases, we show that we can recover generalization bounds
of the form we saw in the Perceptron: the bounds will decrease with number
of data points and increase with “complexity” of the optimal prediction
function. Indeed, looking back at the proof of the Perceptron generalization
bound, all of the above elements appeared. Our generalization bound arose
because we could remove single data points from a set and not change the
number of mistakes made by the Perceptron. A large margin assumption
was essential to get a small mistake bound. The mistake bound itself was
dependent on the iterations of the algorithm. And finally, we related the
size of the margin to the scale of the data and optimal separator.

Though starting from different places, we will shows that the four
different views of generalization can all arrive at similar results. Each
of the aforementioned ingredients can alone lead to generalization, but
considerations of all of these aspects help to improve machine learning
methods. Generalization is multifaceted and multiple perspectives are
useful when designing data-driven predictive systems.

Before diving into these four different views, we first take a quick pause
to consider how we hope generalization bounds might look.

How should we expect the gap to scale?

Before we turn to analyzing generalization gaps, it’s worth first considering
how we should expect them to scale. That is, what is the relationship
between the expected size of ∆gen and the number of observations, n?

First, note that we showed that for a fixed prediction function f , the
expectation of the empirical risk is equal to the population risk. That is, the
empirical risk of a single function is a sample average of the population risk
of that function. As we discussed in Chapter 3, i.i.d. sample averages should
generalize and approximate the average at the population level. Here, we
now turn to describing how they might be expected to scale under different
assumptions.

Quantitative central limit theorems

The central limit theorem formalizes how sample averages estimate their
expectations: If Z is a random variable with bounded variance then µ̂

(n)
Z

converges in distribution to a Gaussian random variable with mean zero
and variance on the order of 1/n.

The following inequalities are useful quantitative forms of the central
limit theorem. They precisely measure how close the sample average will
be to the population average using limited information about the random
quantity.

8

• Markov’s inequality: Let Z be a nonnegative random variable. Then,

P[Z ≥ t] ≤ E[Z]
t

.

This can be proven using the inequality I[Z≥t](z) ≤ z
t .

• Chebyshev’s inequality: Suppose Z is a random variable with mean
µZ and variance σ2

Z. Then,

P[Z ≥ t + µZ] ≤
σ2

Z
t2

Chebyshev’s inequality helps us understand why sample averages are
good estimates of the mean. Suppose that X1, . . . , Xn are independent sam-
ples we were considering above. Let µ̂ denote the sample mean 1

n ∑n
i=1 Zi.

Chebyshev’s inequality implies

P[µ̂ ≥ t + µX] ≤
σ2

X
nt2 ,

which tends to zero as n grows. A popular form of this inequality sets t =
µX which gives

P[µ̂ ≥ 2µX] ≤
σ2

X
nµ2

X
.

• Hoeffding’s inequality: Let Z1, Z2, . . . , Zn be independent random
variables, each taking values in the interval [ai, bi].Let µ̂ denote the
sample mean 1

n ∑n
i=1 Zi. Then

P[µ̂ ≥ µZ + t] ≤ exp
(
− 2n2t2

∑n
i=1(bi − ai)2

)
.

An important special case is when the Zi are identically distributed
copies of Z and take values in [0, 1]. Then we have

P[µ̂ ≥ µZ + t] ≤ exp
(
−2nt2

)
.

This shows that when random variables are bounded, sample averages
concentrate around their mean value exponentially quickly. If we invoke
this bound with t = C/

√
n, the point at which it gives non-trivial results,

we have an error of O(1/
√

n) with exponentially high probability. We will
see shortly that this relationship between error and number of samples is
ubiquitous in generalization theory.

9

These powerful concentration inequalities let us precisely quantify how
close the sample average will be to the population average. For instance, we
know a person’s height is a positive number and that there are no people
who are taller than nine feet. With these two facts, Hoeffding’s inequality
tells us that if we sample the heights of thirty thousand individuals, our
sample average will be within an inch of the true average height with
probability at least 83%. This assertion is true no matter how large the
population of individuals. The required sample size is dictated only by the
variability of height, not by the number of total individuals.

You could replace “height” in this example with almost any attribute
that you are able to measure well. The quantitative central limits tell us that
for attributes with reasonable variability, a uniform sample from a general
population will give a high quality estimate of the average value.

“Reasonable variability” of a random variable is necessary for quanti-
tative central limit theorems to hold. When random variables have low
variance or are tightly bounded, small experiments quickly reveal insights
about the population. When variances are large or effectively unbounded,
the number of samples required for high precision estimates might be im-
practical and our estimators and algorithms and predictions may need to
be rethought.

Bounding generalization gaps for individual predictors

Let us now return to generalization of prediction, considering the example
where the quantity of interest is the prediction error on individuals in a
population. There are effectively two scaling regimes of interest in gener-
alization theory. In one case when the empirical risk is large, we expect
the generalization gap to decrease inversely proportional to

√
n . When the

empirical risk is expected to be very small, on the other hand, we tend to
see the generalization gap decrease inversely proportional to n .

Why we see these two regimes is illustrated by studying the case of
a single prediction function f , chosen independently of the sample S . Our
ultimate goal is to reason about the generalization gap of predictors chosen
by an algorithm running on our data. The analysis we walk through next
doesn’t apply to data-dependent predictors directly, but it nonetheless
provides helpful intuition about what bounds we can hope to get.

For a fixed function f , the zero-one loss on a single randomly chosen
data point is a Bernoulli random variable, equal to 1 with probability p
and 1− p otherwise. The empirical risk RS[f] is the sample average of
this random variable and the risk R[f] is its expectation. To estimate the
generalization gap, we can apply Hoeffding’s inequality to find

10

P[R[f]− RS[f] ≥ ε] ≤ exp
(
−2nε2

)
.

Hence, we will have with probability 1− δ on our sample that

|∆gen(f)| ≤
√

log(1/δ)

2n
.

That is, the generalization gap goes to zero at a rate of 1/
√

n .
In the regime where we observe no empirical mistakes, a more refined

analysis can be applied. Suppose that R[f] > ε . Then the probability that
we observe RS[f] = 0 cannot exceed

P[∀i : sign(f (xi)) = yi] =
n

∏
i=1

P[sign(f (xi)) = yi]

≤ (1− ε)n ≤ e−εn .

Hence, with probability 1− δ,

|∆gen(f)| ≤ log(1/δ)

n
,

which is the 1/n regime. These two rates are precisely what we observe
in the more complex regime of generalization bounds in machine learning.
The main trouble and difficulty in computing bounds on the generalization
gap is that our prediction function f depends on the data, making the above
analysis inapplicable.

In this chapter, we will focus mostly on 1/
√

n rates. These rates are
more general as they make no assumptions about the expected empirical
risk. With a few notable exceptions, the derivation of 1/

√
n rates tends to

be easier than the 1/n counterparts. However, we note that every one of our
approaches to generalization bounds have analyses for the “low empirical
risk” or “large margin” regimes. We provide references at the end of this
chapter to these more refined analyses.

Algorithmic stability

We will first see a tight characterization in terms of an algorithmic robust-
ness property we call algorithmic stability. Intuitively, algorithmic stability
measures how sensitive an algorithm is to changes in a single training
example. Whenever a model is insensitive to such perturbations, the gener-
alization gap will be small. Stability gives us a powerful and intuitive way
of reasoning about generalization.

11

There are a variety of different notions of perturbation. We could
consider resampling a single data point and look at how much a model
changes. We could also leave one data point out and see how much
the model changes. This was the heart of our Perceptron generalization
argument. More aggressively, we could study what happens when a single
data point is arbitrarily corrupted. All three of these approaches yield
similar generalization bounds, though it is often easier to work with one
than the others. To simplify the exposition, we choose to focus on only one
notion (resampling) here.

To introduce the idea of stability, we first condense our notation to make
the presentation a bit less cumbersome. Recall that we operate on tuples
of n labeled examples,

S = ((x1, y1), , (xn, yn)) ∈ (X ×Y)n .

We denote a labeled example as z = (x, y). We will overload our notation
and denote the loss accrued by a prediction function f on a data point z
as loss(f , z). That is, loss(f , z) = loss(f (x), y). We use the uppercase letters
when a labeled example Z is randomly drawn from a population (X, Y).

With this notation in hand, let’s now consider two independent random
samples S = (Z1, . . . , Zn) and S′ = (Z′1, . . . , Z′n), each drawn independently
and identically from a population (X, Y). We call the second sample S′ a
ghost sample as it is solely an analytical device. We never actually collect this
second sample or run any algorithm on it.

We introduce n hybrid samples S(i), for i ∈ {1, . . . , n} as

S(i) = (Z1, . . . , Zi−1, Z′i , Zi+1, . . . , Zn) ,

where the i-th example comes from S′, while all others come from S.
We can now introduce a data-dependent notion of average stability of an

algorithm. For this definition, we think of an algorithm as a deterministic
map A that takes a training sample in (X ×Y)n to some prediction function
in a function space Ω . That is A(S) denotes the function from X to Y that
is returned by our algorithm when run on the sample S.

Definition 2. The average stability of an algorithm A : (X ×Y)n → Ω is

∆(A) = E
S,S′

[
1
n

n

∑
i=1

(
loss(A(S), Z′i)− loss(A(S(i)), Z′i)

)]
.

There are two useful ways to parse this definition. The first is to interpret
average stability as the average sensitivity of the algorithm to a change in
a single example. Since we don’t know which of its n input samples the

12

algorithm may be sensitive to, we test all of them and average out the
results.

Second, from the perspective of A(S), the example Z′i is unseen, since
it is not part of S. But from the perspective of A(S(i)) the example Z′i is
seen, since it is part of S(i) via the substitution that defines the i-th hybrid
sample. This shows that the instrument ∆(A) also measures the average
loss difference of the algorithm on seen and unseen examples. We therefore
have reason to suspect that average stability relates to generalization gap as
the next proposition confirms.

Proposition 1. The expected generalization gap equals average stability:

E[∆gen(A(S))] = ∆(A)

Proof. By linearity of expectation,

E[∆gen(A(S))] = E [R[A(S)]− RS[A(S)]]

= E

[
1
n

n

∑
i=1

loss(A(S), Z′i)

]
−E

[
1
n

n

∑
i=1

loss(A(S), Zi)

]
.

Here, we used that Z′i is an example drawn from the distribution that does
not appear in the set S, while Zi does appear in S. At the same time, Zi
and Z′i are identically distributed and independent of the other examples.
Therefore,

E loss(A(S), Zi) = E loss(A(S(i)), Z′i) .

Applying this identity to each term in the empirical risk above, and com-
paring with the definition of ∆(A), we conclude

E[R[A(S)]− RS[A(S)]] = ∆(A) .

Uniform stability

While average stability gave us an exact characterization of generalization
error, it can be hard to work with the expectation over S and S′. Uniform
stability replaces the averages by suprema, leading to a stronger but useful
notion.

Definition 3. The uniform stability of an algorithm A is defined as

∆sup(A) = sup
S,S′∈(X×Y)n

dH (S,S′)=1

sup
z∈X×Y

|loss(A(S), z)− loss(A(S′), z)|,

where dH(S, S′) is the Hamming distance between tuples S and S′ .

13

In this definition, it is important to note that the z has nothing to do
with S and S′ . Uniform stability is effectively computing the worst-case
difference in the predictions of the learning algorithm run on two arbitrary
datasets that differ in exactly one point.

Uniform stability upper bounds average stability, and hence uniform
stability upper bounds generalization gap (in expectation). Thus, we have
the corollary

E[∆gen(A(S))] ≤ ∆sup(A)

This corollary turns out to be surprisingly useful since many algorithms
are uniformly stable. For example, strong convexity of the loss function is
sufficient for the uniform stability of empirical risk minimization, as we will
see next.

Stability of empirical risk minimization

We now show that empirical risk minimization is uniformly stable provided
under strong assumptions on the loss function. One important assumption
we need is that the loss function loss(w, z) is differentiable and strongly
convex in the model parameters w for every example z. What this means is
that for every example z and for all w, w′ ∈ Ω,

loss(w′, z) ≥ loss(w, z) + 〈∇loss(w, z), w′ − w〉+ µ

2
‖w− w′‖2 .

There’s only one property of strong convexity we’ll need. Namely, if Φ : Rd →
R is µ-strongly convex and w∗ is a stationary point (and hence global mini-
mum) of the function Φ, then we have

Φ(w)−Φ(w∗) ≥ µ

2
‖w− w∗‖2 .

The second assumption we need is that loss(w, z) is L-Lipschitz in w for
every z, i.e., ‖∇loss(w, z)‖ ≤ L . Equivalently, this means |loss(w, z) −
loss(w′, z)| ≤ L‖w− w′‖.

Theorem 1. Assume that for every z, loss(w, z) is µ-strongly convex in w over the
domain Ω, i.e., Further assume that, that the loss function loss(w, z) is L-Lipschitz
in w for every z. Then, empirical risk minimization (ERM) satisfies

∆sup(ERM) ≤ 4L2

µn
.

Proof. Let ŵS = arg minw∈Ω
1
n ∑n

i=1 loss(w, zi) denote the empirical risk min-
imizer on the sample S. Fix arbitrary samples S, S′ of size n that differ in

14

a single index i ∈ {1, . . . , n} where S contains zi and S′ contains z′i . Fix an
arbitrary example z . We need to show that

|loss(ŵS, z)− loss(ŵS′ , z)| ≤ 4L2

µn
.

Since the loss function is L-Lipschitz, it suffices to show that

‖ŵS − ŵS′‖ ≤
4L
µn

.

On the one hand, since ŵS minimizes the empirical risk by definition, it
follows from the strong convexity of the empirical risk that

µ

2
‖ŵS − ŵS′‖2 ≤ RS[ŵS′]− RS[ŵS] .

On the other hand, we can bound the right hand side as

RS[ŵS′]− RS[ŵS]

=
1
n
(loss(ŵS′ , zi)− loss(ŵS, zi)) +

1
n ∑

i 6=j
(loss(ŵS′ , zj)− loss(ŵS, zj))

=
1
n
(loss(ŵS′ , zi)− loss(ŵS, zi)) +

1
n
(loss(ŵS, z′i)− loss(ŵS′ , z′i))

+ (RS′ [ŵS′]− RS′ [ŵS])

≤ 1
n
|loss(ŵS′ , zi)− loss(ŵS, zi)|+

1
n
|loss(ŵS, z′i)− loss(ŵS′ , z′i)|

≤ 2L
n
‖ŵS′ − ŵS‖ .

Here, we used the assumption that loss is L-Lipschitz and the fact that

RS′ [ŵS′]− RS′ [ŵS] ≤ 0 .

Putting together the strong convexity property and our calculation above,
we find

‖ŵS′ − ŵS‖ ≤
4L
µn

.

Hence, ∆sup(ERM) ≤ 4L2

µn .

An interesting point about this result is that there is no explicit reference
to the complexity of the model class referenced by Ω.

15

Stability of regularized empirical risk minimization

Some empirical risk minimization problems, such as the Perceptron (ERM
with hinge loss) we saw earlier, are convex but not strictly convex. We
can turn convex problems into strongly convex problems by adding an
`2-regularization term to the loss function:

r(w, z) = loss(w, z) +
µ

2
‖w‖2 .

The last term is named `2-regularization, weight decay, or Tikhonov regulariza-
tion depending on field and context.

By construction, if the loss is convex, then the regularized loss r(w, z)
is µ-strongly convex. Hence, our previous theorem applies. However, by
adding regularization we changed the objective function. The optimizer of
the regularized objective is in general not the same as the optimizer of the
unregularized objective.

Fortunately, A simple argument shows that solving the regularized
objective also solves the unregularized objective. The idea is that assum-
ing ‖w‖ ≤ B we can set the regularization parameter µ = L

B
√

n . This ensures

that the regularization term µ‖w‖2 is at most O(LB√
n) and therefore the min-

imizer of the regularized risk also minimizes the unregularized risk up to
error O(LB√

n) . Plugging this choice of µ into the ERM stability theorem, the

generalization gap will also be O(LB√
n) .

The case of regularized hinge loss

Let’s relate the generalization theory we just saw to the familiar case of the
perceptron algorithm from Chapter 3. This corresponds to the special case
of minimizing the regularized hinge loss

r(w, (x, y)) = max{1− y〈w, x〉, 0}+ µ

2
‖w‖2 .

Moreover, we assume that the data are are linearly separable with margin γ.
Denoting by ŵS the empirical risk minimizer on a random sample S of

size n, we know that
µ

2
‖ŵS‖2 ≤ RS(ŵS) ≤ RS(0) = 1 .

Hence, ‖ŵS‖ ≤ B for B =
√

2/µ. We can therefore restrict our domain to
the Euclidean ball of radius B. If the data are also bounded, say ‖x‖ ≤ D,
we further get that

‖∇wr(w, z)‖ ≤ ‖x‖+ µ‖w‖ = D + µB .

16

Hence, the regularized hinge loss is L-Lipschitz with

L = D + µB = D +
√

2µ .

Let wγ be a maximum margin hyperplane for the sample S. We know
that the empirical loss will satisfy

RS[ŵS] ≤ RS[wγ] =
µ

2
‖wγ‖2 =

µ

2γ2 .

Hence, by Theorem 1,

E[R[ŵS]] ≤ E[RS[ŵS]] + ∆sup(ERM) ≤ µ

2γ2 +
4(D +

√
2µ)2

µn

Setting µ = 2γD√
n and noting that γ ≤ D gives that

E[R[ŵS]] ≤ O
(

D
γ
√

n

)
.

Finally, since the regularized hinge loss upper bounds the zero-one loss, we
can conclude that

P[YŵT
S X < 0] ≤ O

(
D

γ
√

n

)
,

where the probability is taken over both sample S and test point (X, Y).
Applying Markov’s inequality to the sample, we can conclude the same
bound holds for a typical sample up to constant factors.

This bound is proportional to the square root of the bound we saw for
the perceptron in Chapter 3. As we discussed earlier, this rate is slower
than the perceptron rate as it does not explicitly take into account the
fact that the empirical risk is zero. However, it is worth noting that the
relationship between the variables in question—diameter, margin, and
number of samples—is precisely the same as for the perceptron. This kind
of bound is common and we will derive it a few more times in this chapter.

Stability analysis combined with explicit regularization and convexity
thus give an appealing conceptual and mathematical approach to reasoning
about generalization. However, empirical risk minimization involving non-
linear models is increasingly successful in practice and generally leads to
non-convex optimization problems.

Model complexity and uniform convergence

We briefly review other useful tools to reason about generalization. Ar-
guably, the most basic is based on counting the number of different functions
that can be described with the given model parameters.

17

Given a sample S of n independent draws from the same underlying
distribution, the empirical risk RS[f] for a fixed function f is an average
of n random variables, each with mean equal to the risk R[f] . Assuming for
simplicity that the range of our loss function is bounded in the interval [0, 1] ,
Hoeffding’s bound gives us the tail bound

P [RS[f] > R[f] + t] ≤ exp(−2nt2) .

By applying the union bound to a finite set of functions F we can
guarantee that with probability 1− δ, we have for all functions f ∈ F that

∆gen(f) ≤
√

ln |F |+ ln(1/δ)

n
. (1)

The cardinality bound |F | is a basic measure of the complexity of the
model family F . We can think of the term ln(F) as a measure of com-
plexity of the function class F . The gestalt of the generalization bound as
“
√

complexity/n” routinely appears with varying measures of complexity.

VC dimension

Bounding the generalization gap from above for all functions in a function
class is called uniform convergence. A classical tool to reason about uniform
convergence is the Vapnik-Chervonenkis dimension (VC dimension) of a
function class F ⊆ X → Y, denoted VC(F) . It’s defined as the size of the
largest set Q ⊆ X such that for any Boolean function h : Q→ {−1, 1}, there
is a predictor f ∈ F such that f (x) = h(x) for all x ∈ Q . In other words, if
there is a size-d sample Q such that the functions of F induce all 2d possible
binary labelings of Q, then the VC-dimension of F is at least d .

The VC-dimension measures the ability of the model class to conform to
an arbitrary labeling of a set of points. The so-called VC inequality implies
that with probability 1− δ, we have for all functions f ∈ F

∆gen(f) ≤
√

VC(F) ln n + ln(1/δ)

n
. (2)

We can see that the complexity term VC(F) refines our earlier cardinality
bound since VC(F) ≤ log |F | + 1. However VC-dimension also applies
to infinite model classes. Linear models over Rd have VC-dimension d,
corresponding to the number of model parameters. Generally speaking,
VC dimension tends to grow with the number of model parameters for
many model families of interest. In such cases, the bound in Equation 2

becomes useless once the number of model parameters exceeds the size of
the sample.

18

However, the picture changes significantly if we consider notions of
model complexity different than raw counts of parameters. Consider two
sets of vectors X0 and X1 all having Euclidean norm bounded by D. Let F
be the set of all linear functions f such that f (x) = wTx with ||w|| ≤
γ−1, f (x) ≤ −1 if x ∈ X0, and f (x) ≥ 1 if x ∈ X1. Vapnik showed4 that the
VC dimension of this set of hyperplanes was D2

γ2 . As described in a survey
of support vector machines by Burges, the worst case arrangement of n data
points is a simplex in n− 2 dimensions.5 Plugging this VC-dimension into
our generalization bound yields

∆gen(f) ≤

√
D2 ln n + γ2 ln(1/δ)

γ2n
.

We again see our Perceptron style generalization bound! This bound again
holds when the empirical risk is nonzero. And the dimension of the data, d
does not appear at all in this bound. The difference between the parametric
model and the margin-like bound is that we considered properties of the
data. In the worst case bound which counts parameters, it appears that high-
dimensional prediction is impossible. It is only by considering data-specific
properties that we can find a reasonable generalization bound.

Rademacher complexity

An alternative to VC-dimension is Rademacher complexity, a flexible tool
that often is more amenable to calculations that incorporate problem-specific
aspects such as restrictions on the distribution family or properties of the
loss function. To get a generalization bound in terms of Rademacher
complexity, we typically apply the definition not the model class F itself
but to the class of functions L of the form h(z) = loss(f , z) for some f ∈ F
and a loss function loss . By varying the loss function, we can derive different
generalization bounds.

Fix a function class L ⊆ Z → R, which will later correspond to the
composition of a predictor with a loss function, which is why we chose the
symbol L . Think of the domain Z as the space of labeled examples z =
(x, y) . Fix a distribution P over the space Z .

The empirical Rademacher complexity of a function class L ⊆ Z → R with
respect to a sample {z1, . . . , zn} ⊆ Z drawn i.i.d. from the distribution P is
defined as:

R̂n(L) = E
σ∈{−1,1}n

[
1
n

sup
h∈L

∣∣∣∣∣ n

∑
i=1

σih(zi)

∣∣∣∣∣
]

.

We obtain the Rademacher complexity Rn(L) = E

[
R̂n(L)

]
by taking the

19

expectation of the empirical Rademacher complexity with respect to the
sample. Rademacher complexity measures the ability of a function class to
interpolate a random sign pattern assigned to a point set.

One application of Rademacher complexity applies when the loss func-
tion is L-Lipschitz in the parameterization of the model class for every exam-
ple z . This bound shows that with probability 1− δ for all functions f ∈ F ,
we have

∆gen(f) ≤ 2LRn(F) + 3

√
log(1/δ)

n
.

When applied to the hinge loss with the function class being hyperplanes of
norm less than γ−1, this bound again recovers the perceptron generalization
bound

∆gen(f) ≤ 2
D

γ
√

n
+ 3

√
log(1/δ)

n
.

Margin bounds for ensemble methods

Ensemble methods work by combining many weak predictors into one
strong predictor. The combination step usually involves taking a weighted
average or majority vote of the weak predictors. Boosting and random
forests are two ensemble methods that continue to be highly popular and
competitive in various settings. Both methods train a sequence of small de-
cision trees, each on its own achieving modest accuracy on the training task.
However, so long as different trees make errors that aren’t too correlated,
we can obtain a higher accuracy model by taking, say, a majority vote over
the individual predictions of the trees.

Researchers in the 1990s already observed that boosting often continues
to improve test accuracy as more weak predictors are added to the ensemble.
The complexity of the entire ensemble was thus often far too large to apply
standard uniform convergence bounds.

A proffered explanation was that boosting, while growing the complex-
ity of the ensemble, also improved the margin of the ensemble predictor.
Assuming that the final predictor f : X → {−1, 1} is binary, its margin on
an example (x, y) is defined as the value y f (x) . The larger the margin the
more “confident” the predictor is about its prediction. A margin y f (x) just
above 0 shows that the weak predictors in the ensemble were nearly split
evenly in their weighted votes.

An elegant generalization bound relates the risk of any predictor f to the
fraction of correctly labeled training examples at a given margin θ. Below
let R[f] be the risk of f w.r.t. zero-one loss. However, let Rθ

S(f) be the
empirical risk with respect to margin errors at level θ, i.e., the loss 1(y f (x) ≤

20

θ) that penalizes errors where the predictor is within an additive θ margin
of making a mistake.

Theorem 2. With probability 1− δ, every convex combination f of base predictors
in H satisfies the following bound for every θ > 0 :

R[f]− Rθ
S[f] ≤ O

(
1√
n

(
VC(H) log n

θ2 + log(1/δ)

)1/2
)

The theorem can be proved using Rademacher complexity. Crucially, the
bound only depends on the VC dimension of the base class H but not the
complexity of ensemble. Moreover, the bound holds for all θ > 0 and so we
can choose θ after knowing the margin that manifested during training.

Margin bounds for linear models

Margins also play a fundamental role for linear prediction. We saw one
margin bound for linear models in our chapter on the Perceptron algorithm.
Similar bounds hold for other variants of linear prediction. We’ll state the
result here for a simple least squares problem:

w∗ = arg min
w : ‖w‖≤B

1
n

n

∑
i=1

(〈xi, w〉 − y)2

In other words, we minimize the empirical risk w.r.t. the squared loss
over norm bounded linear separators, call this class WB . Further assume
that all data points satisfy ‖xi‖ ≤ 1 and y ∈ {−1, 1}. Analogous to the
margin bound in Theorem 2, it can be shown that with probability 1− δ for
every linear predictor f specified by weights inWB we have

R[f]− Rθ
S[f] ≤ 4

R(WB)

θ
+ O

(
log(1/δ)√

n

)
.

Moreover, given the assumptions on the data and model class we made,
the Rademacher complexity satisfies R(W) ≤ B/

√
n. What we can learn

from this bound is that the relevant quantity for generalization is the ratio
of complexity to margin B/θ .

It’s important to understand that margin is a scale-sensitive notion;
it only makes sense to talk about it after suitable normalization of the
parameter vector. If the norm didn’t appear in the bound we could scale up
the parameter vector to achieve any margin we want. For linear predictors
the Euclidean norm provides a natural and often suitable normalization.

21

Generalization from algorithms

In the overparameterized regime, there are always an infinite number of
models that minimize empirical risk. However, when we run a particular
algorithm, the algorithm usually returns only one from this continuum. In
this section, we show how directly analyzing algorithmic iteration can itself
yield generalization bounds.

One pass optimization of stochastic gradient descent

As we briefly discussed in the optimization chapter, we can interpret the
convergence analysis of stochastic gradient descent as directly providing
a generalization bound for a particular variant of SGD. Here we give the
argument in full detail. Suppose that we choose a loss function that upper
bounds the number of mistakes. That is loss(ŷ, y) ≥ 1{yŷ < 0} . The hinge
loss would be such an example. Choose the function R to be the risk (not
empirical risk!) with respect to this loss function:

R[w] = E[loss(wTx, y)]

At each iteration, suppose we gain access to an example pair (xi, yi) sampled
i.i.d. from the a data generating distribution. Then when we run the
stochastic gradient method, the iterates are

wt+1 = wt − αte(wT
t xt, yt)xt , where e(z, y) =

∂loss(z, y)
∂z

.

Suppose that for all x, ‖x‖ ≤ D . Also suppose that |e(z, y)| ≤ C . Then the
SGD convergence theorem tells us that after n steps, starting at w0 = 0
and using an appropriately chosen constant step size, the average of our
iterates w̄n will satisfy

P[sign(w̄T
n x) 6= y] ≤ E[R[w̄n]] ≤ R[w?] +

CD‖w?‖√
n

.

This inequality tells us that we will find a distribution boundary that has
low population risk after seeing n samples. And the population risk itself
lets us upper bound the probability of our model making an error on new
data. That is, this inequality is a generalization bound.

We note here that this importantly does not measure our empirical
risk. By running stochastic gradient descent, we can find a low-risk model
without ever computing the empirical risk.

Let us further assume that the population can be separated with large
margin. As we showed when we discussed the Perceptron, the margin is

22

equal to the inverse of the norm of the corresponding hyperplane. Suppose
we ran the stochastic gradient method using a hinge loss. In this case, C = 1,
so, letting γ denote the maximum margin, we get the simplified bound

P[sign(w̄T
n x) 6= y] ≤ D

γ
√

n
.

Note that the Perceptron analysis did not have a step size parameter that
depended on the problem instance. But, on the other hand, this analysis
of SGD holds regardless of whether the data is separable or whether zero
empirical risk is achieved after one pass over the data. The stochastic
gradient analysis is more general but generality comes at the cost of a looser
bound on the probability of error on new examples.

Uniform stability of stochastic gradient descent

Above we showed that empirical risk minimization is stable no matter what
optimization method we use to solve the objective. One weakness is that the
analysis applied to the exact solution of the optimization problem and only
applies for strongly convex loss function. In practice, we might only be able
to compute an approximate empirical risk minimizer and may be interested
in losses that are not strongly convex. Fortunately, we can also show that
some optimization methods are stable even if they don’t end up computing
a minimizer of a strongly convex empirical risk. Specifically, this is true
for the stochastic gradient method under suitable assumptions. Below we
state one such result which requires the assumption that the loss function
is smooth. A continuously differentiable function f : Rd → R is β-smooth
if ‖∇ f (y)−∇ f (x)‖ ≤ β‖y− x‖.
Theorem 3. Assume a continuously differentiable loss function that is β-smooth
and L-Lipschitz on every example and convex. Suppose that we run the stochastic
gradient method (SGM) with step sizes ηt ≤ 2/β for T steps. Then, we have

∆sup(SGM) ≤ 2L2

n

T

∑
t=1

ηt .

The theorem allows for SGD to sample the same data points multiple
times, as is common practice in machine learning. The stability approach
also extends to the non-convex case albeit with a much weaker quantitative
bound.

What solutions does stochastic gradient descent favor?

We reviewed empirical evidence that explicit regularization is not necessary
for generalization. Researchers therefore believe that a combination of

23

data generating distribution and optimization algorithm perform implicit
regularization. Implicit regularization describes the tendency of an algorithm
to seek out solutions that generalize well on their own on a given a dataset
without the need for explicit correction. Since the empirical phenomena we
reviewed are all based on gradient methods, it makes sense to study implicit
regularization of gradient descent. While a general theory for non-convex
problems remains elusive, the situation for linear models is instructive.

Consider again the linear case of gradient descent or stochastic gradient
descent:

wt+1 = wt − αetxt

where et is the gradient of the loss at the current prediction. As we showed in
the optimization chapter, if we run this algorithm to convergence, we must
have the resulting ŵ lies in the span of the data, and that it interpolates the
data. These two facts imply that the optimal ŵ is the minimum Euclidean
norm solution of Xw = y . That is, w solves the optimization problem

minimize ‖w‖2

subject to yiwTxi = 1 .

Moreover, a closed form solution of this problem is given by

ŵ = XT(XXT)−1y .

That is, when we run stochastic gradient descent we converge to a very
specific solution. Now what can we say about the generalization properties
of this minimum norm interpolating solution?

The key to analyzing the generalization of the minimum norm solu-
tion will be a stability-like argument. We aim to control the error of the
model trained on the first m data points on the next data point in the
sequence, xm+1 . To do so, we use a simple identity that follows from linear
algebra.

Lemma 1. Let S be an arbitrary set of m ≥ 2 data points. Let wm−1 and wm denote
the minimum norm solution trained on the first m− 1 and m points respectively.
Then

(1− ym〈wm−1, xm〉)2 = s2
m(‖wm‖2 − ‖wm−1‖2) ,

where
sm := dist (span(x1, . . . , xm−1), xm) .

We hold off on proving this lemma and first prove our generalization
result with the help of this lemma.

24

Theorem 4. Let Sn+1 denote a set of n + 1 i.i.d. samples. Let Sj denote the
first j samples and wj denote the solution of minimum norm that interpolates
these j points. Let Rj denote the maximum norm of ‖xi‖ for 1 ≤ i ≤ j . Let (x, y)
denote another independent sample from D . Then if εj := E[(1− y fSj(x))2] is a
non-increasing sequence, we have

P[y〈wn, x〉 < 0] ≤
E[R2

j ‖wn+1‖2]

n
.

Proof. Lemma together with the bound s2
i ≤ R2

n+1 yields the inequality

E[(1− y〈wi, x〉)2] ≤ (E[R2
n+1‖wi+1‖2]−E[R2

n+1‖wi‖2]) .

Here, we could drop the subscript on x and y on the left-hand side as they
are identically distributed to (xi+1, yi+1) . Adding these inequalities together
gives the bound

1
n

n

∑
i=1

E[(1− y fSi(x))2] ≤ E[R2
n+1‖wn+1‖2]

n
.

Assuming the sequence is decreasing means that the minimum summand
of the previous inequality is E[(1− y fi(x))2] . This and Markov’s inequality
prove the theorem.

This proof reveals that the minimum norm solution, the one found
by running stochastic gradient descent to convergence, achieves a nearly
identical generalization bound as the Perceptron, even with the fast 1/n
rate. Here, nothing is assumed about margin, but instead we assume that
the complexity of the interpolating solution does not grow rapidly as we
increase the amount of data we collect. This proof combines ideas from
stability, optimization, and model complexity to find yet another explanation
for why gradient methods find high-quality solutions to machine learning
problems.

Proof of Lemma 1

We conclude with the deferred proof of Lemma 1.

Proof. Let K = XXT denote the kernel matrix for S . Partition K as

K =

[
K11 K12
K21 K22

]

25

where K11 is (m− 1)× (m− 1) and K22 is a scalar equal to 〈xm, xm〉 . Simi-
larly, partition the vector of labels y so that y(m−1) denotes the first m− 1
labels. Under this partitioning,

〈wm−1, xm〉 = K21K−1
11 y(m−1) .

Now note that
s2

m = K22 − K21K−1
11 K12 .

Next, using the formula for inverting partitioned matrices, we find

K−1 =

[
(K11 − K12K21K−1

22)−1 s−2
m K−1

11 K12
s−2

m (K−1
11 K12)

T s−2
m

]
.

By the matrix inversion lemma we have

(K11 − K12K21K−1
22)−1 = K−1

11 + s−2
m

(
K21K−1

11

)T (
K21K−1

11

)
.

Hence,

‖wi‖ = yTK−1y

= s−2
m (y2

m − 2ym〈wm−1, xm〉+ 〈wm−1, xm〉2) + y(m−1)T
K−1

11 y(m−1) .

Rearranging terms proves the lemma.

Looking ahead

Despite significant effort and many recent advances, the theory of gen-
eralization in overparameterized models still lags behind the empirical
phenomenology. What governs generalization remains a matter of debate
in the research community.

Existing generalization bounds often do not apply directly to practice
by virtue of their assumptions, are quantitatively too weak to apply to
heavily overparameterized models, or fail to explain important empirical
observations. However, it is not just a lack of quantitative sharpness that
limits our understanding of generalization.

Conceptual questions remain open: What is it a successful theory of
generalization should do? What are formal success criteria? Even a qualita-
tive theory of generalization, that is not quantitatively precise in concrete
settings, may be useful if it leads to the successful algorithmic interventions.
But how do we best evaluate the value of a theory in this context?

26

Our focus in this chapter was decidedly narrow. We discussed how to
related risk and empirical risk. This perspective can only capture ques-
tions that relate performance on a sample to performance on the very
same distribution that the sample was drawn from. What is left out are
important questions of extrapolation from a training environment to test-
ing conditions that differ from training. Overparameterized models that
generalize well in the narrow sense can fail dramatically even with small
changes in the environment. We will revisit the question of generalization
for overparameterized models in our chapter on deep learning.

Chapter notes

The tight characterization of generalization gap in terms of average stability,
as well as stability of regularized empirical risk minimization (Theorem
1), is due to Shalev-Shwartz et al.6 Uniform stability was introduced by
Bousquet and Elisseeff.7 For additional background on VC dimension and
Rademacher complexity, see, for example, the text by Shalev-Shwartz and
Ben-David.8

The double descent figure is from work of Belkin et al.9 Earlier work
pointed out similar empirical risk-complexity relationships.10 The empirical
findings related to the randomization test and the role of regularization are
due to Zhang et al.11

Theorem 2 is due to Schapire et al.12 Later work showed theoretically
that boosting maximizes margin.13, 14 The margin bound for linear models
follows from more general results of Kakade, Sridharan, and Tewari15 that
build on earlier work by Bartlett and Mendelson,16 as well as work of
Koltchinskii and Panchenko.17 Rademacher complexity bounds for family
of neural networks go back to work of Bartlett18 and remain and active
research topic. We will see more on this in our chapter on deep learning.

The uniform stability bound for stochastic gradient descent is due to
Hardt, Recht, and Singer.19 Subsequent work further explores the gener-
alization performance stochastic gradient descent in terms of its stability
properties. Theorem 4 and Lemma 1 are due to Liang and Recht.20

There has been an explosion of work on generalization and overparam-
eterization in recent years. See, also, recent work exploring how other
norms shed light on generalization performance.21 Our exposition is by no
means a representative survey of the broad literature on this topic. There
are several ongoing lines of work we did not cover: PAC-Bayes bounds,22

compression bounds,23 and arguments about the properties of the optimiza-
tion landscape.24 This chapter builds on a chapter by Hardt,25 but contains
several structural changes as well as different results.

27

Bibliography

1 Tengyuan Liang, Alexander Rakhlin, and Xiyu Zhai. On the multiple
descent of minimum-norm interpolants and restricted lower isometry of
kernels. In Conference on Learning Theory, 2020.

2 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Computer Vision and Pattern Recognition,
2016.

3 Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen,
Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, and
Zhifeng Chen. Gpipe: Efficient training of giant neural networks using
pipeline parallelism. Advances in Neural Information Processing Systems,
32:103–112, 2019.

4 Vladimir Vapnik. Statistical Larning Theory. Wiley, 1998.

5 Christopher J. C. Burges. A tutorial on support vector machines for
pattern recognition. Data Mining and Knowledge Discovery, 2(2):121–167,
1998.

6 Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridha-
ran. Learnability, stability and uniform convergence. Journal of Machine
Learning Research, 11(Oct):2635–2670, 2010.

7 Olivier Bousquet and André Elisseeff. Stability and generalization. Journal
of Machine Learning Research, 2(Mar):499–526, 2002.

8 Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press, 2014.

9 Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling
modern machine-learning practice and the classical bias-variance trade-
off. Proceedings of the National Academy of Sciences, 2019.

28

10 Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the
real inductive bias: On the role of implicit regularization in deep learning.
arXiv:1412.6614, 2014.

11 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding deep learning requires rethinking generalization.
In International Conference on Learning Representations, 2017.

12 Robert E Schapire, Yoav Freund, Peter Bartlett, Wee Sun Lee, et al. Boost-
ing the margin: A new explanation for the effectiveness of voting methods.
The Annals of Statistics, 26(5):1651–1686, 1998.

13 Tong Zhang and Bin Yu. Boosting with early stopping: Convergence and
consistency. The Annals of Statistics, 33:1538–1579, 2005.

14 Matus Telgarsky. Margins, shrinkage, and boosting. In International
Conference on Machine Learning, 2013.

15 Sham M. Kakade, Karthik Sridharan, and Ambuj Tewari. On the complex-
ity of linear prediction: Risk bounds, margin bounds, and regularization.
In Advances in Neural Information Processing Systems, pages 793–800, 2009.

16 Peter L. Bartlett and Shahar Mendelson. Rademacher and Gaussian
complexities: Risk bounds and structural results. Journal of Machine
Learning Research, 3(Nov):463–482, 2002.

17 Vladimir Koltchinskii and Dmitry Panchenko. Empirical margin distribu-
tions and bounding the generalization error of combined classifiers. The
Annals of Statistics, 30(1):1–50, 2002.

18 Peter L. Bartlett. The sample complexity of pattern classification with
neural networks: the size of the weights is more important than the size
of the network. Transactions on Information Theory, 44(2):525–536, 1998.

19 Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize
better: Stability of stochastic gradient descent. In International Conference
on Machine Learning, 2016.

20 Tengyuan Liang and Benjamin Recht. Interpolating classifiers make few
mistakes. arXiv:2101.11815, 2021.

21 Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati
Srebro. Exploring generalization in deep learning. In Advances in Neural
Information Processing Systems, pages 5947–5956, 2017.

29

22 Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous
generalization bounds for deep (stochastic) neural networks with many
more parameters than training data. arXiv:1703.11008, 2017.

23 Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger
generalization bounds for deep nets via a compression approach.
arXiv:1802.05296, 2018.

24 Chiyuan Zhang, Qianli Liao, Alexander Rakhlin, Karthik Sridharan,
Brando Miranda, Noah Golowich, and Tomaso Poggio. Theory of deep
learning III: Generalization properties of SGD. Technical report, Discus-
sion paper, Center for Brains, Minds and Machines (CBMM). Preprint,
2017.

25 Moritz Hardt. Generalization in overparameterized models. In Tim
Roughgarden, editor, Beyond the Worst-Case Analysis of Algorithms, page
486–505. Cambridge University Press, 2021.

30

	Generalization gap
	Overparameterization: empirical phenomena
	Effects of model complexity
	Optimization versus generalization
	The diminished role of explicit regularization

	Theories of generalization
	How should we expect the gap to scale?
	Quantitative central limit theorems
	Bounding generalization gaps for individual predictors
	Algorithmic stability
	Uniform stability
	Stability of empirical risk minimization
	Stability of regularized empirical risk minimization
	The case of regularized hinge loss
	Model complexity and uniform convergence
	VC dimension
	Rademacher complexity
	Margin bounds for ensemble methods
	Margin bounds for linear models
	Generalization from algorithms
	One pass optimization of stochastic gradient descent
	Uniform stability of stochastic gradient descent
	What solutions does stochastic gradient descent favor?
	Proof of Lemma 1

	Looking ahead
	Chapter notes

