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Representations and features

The starting point for prediction is the existence of a vector x from which
we can predict the value of y. In machine learning, each component of this
vector is called a feature. We would like to find a set of features that are
good for prediction. Where do features come from in the first place?

In much of machine learning, the feature vector x is considered to be
given. However, features are not handed down from first principles. They
had to be constructed somehow, often based on models that incorporate
assumptions, design choices, and human judgments. The construction
of features often follows human intuition and domain specific expertise.
Nonetheless, there are several principles and recurring practices we will
highlight in this chapter.

Feature representations must balance many demands. First, at a pop-
ulation level, they must admit decision boundaries with low error rates.
Second, we must be able to optimize the empirical risk efficiently given
the current set of features. Third, the choice of features also influences the
generalization ability of the resulting model.

There are a few core patterns in feature engineering that are used to meet
this set of requirements. First, there is the process of turning a measurement
into a vector on a computer, which is accomplished by quantization and
embedding. Second, in an attempt to focus on the most discriminative
directions, the binned vectors are sorted relative to their similarity to a set
of likely patterns through a process of template matching. Third, as a way
to introduce robustness to noise or reduce and standardize the dimension
of data, feature vectors are compressed into a low, fixed dimension via
histograms and counts. Finally, nonlinear liftings are used to enable predictors
to approximate complex, nonlinear decision boundaries. These processes
are often iterated, and often times the feature generation process itself is
tuned on the collected data.

Measurement

Before we go into specific techniques and tricks of trade, it’s important
to recognize the problem we’re dealing with in full generality. Broadly
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speaking, the first step in any machine learning process is to numerically
represent objects in the real world and their relationships in a way that can
be processed by computers.

There is an entire scientific discipline, called measurement theory, de-
voted to this subject. The field of measurement theory distinguishes be-
tween a measurement procedure and the target construct that we wish to
measure.1, 2, 3 Physical temperature, for example, is a construct and a ther-
mometer is a measurement device. Mathematical ability is another example
of a construct; a math exam can be thought of as a procedure for measuring
this construct. While we take reliable measurement of certain physical
quantities for granted today, other measurement problems remain difficult.

It is helpful to frame feature creation as measurement. All data stems
from some measurement process that embeds and operationalizes numerous
important choices.4 Measurement theory has developed a range of tech-
niques over the decades. In fact, many measurement procedures themselves
involve statistical models and approximations that blur the line between
what is a feature and what is a model. Practitioners of machine learning
should consult with experts on measurement within specific domains be-
fore creating ad-hoc measurement procedures. More often than not there is
much relevant scholarship on how to measure various constructs of interest.
When in doubt it’s best to choose constructs with an established theory.

Human subjects

The complexities of measurement are particularly apparent when our fea-
tures are about human subjects. Machine learning problems relating to
human subjects inevitably involve features that aim to quantify a person’s
traits, inclinations, abilities, and qualities. Researchers often try to get at
these constructs by designing surveys, tests, or questionnaires. However,
much data about humans is collected in an ad-hoc manner, lacking clear
measurement principles. This is especially true in a machine learning
context.

Featurization of human subjects can have serious consequences. Recall
the example of using prediction in the context of the criminal justice system.
The COMPAS recidivism risk score is trained on survey questions designed
using psychometric models to capture archetypes of people that might
indicate future criminal behavior. The exam asks people to express their
degree of agreement with statements such as “I always practice what I
preach,” “I have played sick to get out of something,” and “I’ve been seen
by others as cold and unfeeling.”5 Though COMPAS features have been
used to predict recidivism, they have been shown to be no more predictive
than using age, gender, and past criminal activity.6
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Machine learning and data creation involving human subjects should be
ethically evaluated in the same manner as any other scientific investigation
with humans. Depending on context, different ethical guidelines and
regulations exist that aim at protecting human research subjects. The 1979

Belmont Report is one ethical framework, commonly applied in the United
States. It rests on the three principles of respect for persons, beneficence, and
justice. Individuals should be treated as autonomous agents. Harm should
be minimized, while benefits should be maximized. Inclusion and exclusion
should not unduly burden specific individuals, as well as marginalized and
vulnerable groups.

Universities typically require obtaining institutional approval and de-
tailed training before conducting human subject research. These rules apply
also when data is collected from and about humans online.

We advise any reader to familiarize themselves with all applicable rules
and regulations regarding human subject research at their institution.

Quantization

Signals in the real world are often continuous and we have to choose how
to discretize them for use in a machine learning pipeline. Broadly speaking,
such practices fall under the rubric of quantization. In many cases, our
goal is to quantize signals so that we can reconstruct them almost perfectly.
This is the case of high resolution photography, high fidelity analog-to-
digital conversion of audio, or perfect sequencing of proteins. In other
cases, we may want to only record skeletons of signals that are useful for
particular tasks. This is the case for almost all quantizations of human
beings. While we do not aim to do a thorough coverage of this subject,
we note quantization is an essential preprocessing step in any machine
learning pipeline. Improved quantization schemes may very well translate
into improved machine learning applications. Let us briefly explore a few
canonical examples and issues of quantization in contemporary data science.

Images

Consider the raw bitmap formatting of an image. A bitmap file is an array
indexed by three coordinates. Mathematically, this corresponds to a tensor
of order 3. The first two coordinates index space and the third indexes a
color channel. That is, xijk denotes the intensity at row i, column j, and
color channel k. This representation summarizes an image by dividing two
dimensional space into a regular grid, and then counting the quantity of
each of three primary colors at each grid location.
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This pixel representation suffices to render an image on a computer
screen. However, it might not be useful for prediction. Images of the
same scene with different lighting or photographic processes might end up
being quite dissimilar in a pixel representation. Even small translations of
two images might be far apart from each other in a pixel representation.
Moreover, from the vantage point of linear classification, we could train a
linear predictor on any ordering of the pixels, but scrambling the pixels in an
image certainly makes it unrecognizable. We will describe transformations
that address such shortcomings of pixel representations in the sequel.

Text

Consider a corpus of n documents. These documents will typically have
varying length and vocabulary. To embed a document as a vector, we can
create a giant vector for every word in the document where each component
of the vector corresponds to one dictionary word. The dimension of the
vector is therefore the size of the dictionary. For each word that occurs in
the document we set the corresponding coordinate of the vector to 1. All
other coordinates corresponding to words not in the document we set to 0.

This is called a one-hot encoding of the words in the dictionary. The
one-hot encoding might seem both wasteful due to the high dimension
and lossy since we don’t encode the order of the words in the document.
Nonetheless, it turns out to be useful in a number of applications. Since
typically the language has more dictionary words than the length of the
document, the encoding maps a document to a very sparse vector. A corpus
of documents would map to a set of sparse vectors.

Template matching

While quantization can often suffice for prediction problems, we highlighted
above how this might be too fine a representation to encode when data
points are similar or dissimilar. Often times there are higher level patterns
that might be more representative for discriminative tasks. A popular way to
extract these patterns is template matching, where we extract the correlation
of a feature vector x with a known pattern v, called template.

At a high level, a template match creates a feature x′ from the feature x
by binning the correlation with a template. A simple example would be to
fix a template v and compute

x′ = max
{

vTx, 0
}

.
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We now describe some more specific examples that are ubiquitous in pattern
classification.

Fourier, cosine, and wavelet transforms

One of the foundational patterns that we match to spatial or temporal data
is sinusoids. Consider a vector in Rd and the transformation with k-th
component

x′k = |vT
k x| .

Here the `-th component of vk is given by vk` = exp(2πik`/d). In this case
we are computing the magnitude of the Fourier transform of the feature vector.
This transformation measures the amount of oscillation in a vector. The
magnitude of the Fourier transform has the following powerful property:
Suppose z is a translated version of x so that

zk = x(k+s)mod d

for some shift s. Then one can check that for any vk,

|vT
k x| = |vT

k z| .

That is, the magnitude of the Fourier transform is translation invariant. There
are a variety of other transforms that fall into this category of capturing the
transformation invariant content of signals including cosine and wavelet
transforms.

Convolution

For spatial or temporal data, we often consider two data points to be
similar if we can translate one to align with another. For example, small
translations of digits are certainly the same digit. Similarly, two sound
utterances delayed by a few milliseconds are the same for most applications.
Convolutions are small templates that are translated over a feature figure
to count the number of occurrences of some pattern. The output of a
convolution will have the same spatial extent as the input, but will be a
“heat map” denoting the amount of correlation with the template at each
location in the vector. Multiple convolutions can be concatenated to add
discriminative power. For example, if one wants to design a system to
detect animals in images, one might design a template for heads, legs, and
tails, and then linear combinations of these appearances might indicate the
existence of an animal.

5



Summarization and histograms

Histograms summarize statistics about counts in data. These serve as a
method for both reducing the dimensionality of an input and removing
noise in the data. For instance, if a feature vector was the temperature in a
location over a year, this could be converted into a histogram of temperatures
which might better discriminate between locations. As another example,
we could downsample an image by making a histogram of the amount of
certain colors in local regions of the image.

Bag of words

We could summarize a piece of text by summing up the one-hot encoding
of each word that occurs in the text. The resulting vector would have entries
where each component is the number of times the associated word appears
in the document. This is a bag of words representation of the document.
A related representation that might take the structure of text better into
account might have a bag of words for every paragraph or some shorter-
length contiguous context.

Bag of words representations are surprisingly powerful. For example,
documents about sports tend to have a different vocabulary than documents
about fashion, and hence are far away from each other in such an embedding.
Since the number of unique words in any given document is much less than
all possible words, bag-of-words representations can be reasonably compact
and sparse. The representations of text as large-dimensional sparse vectors
can be deployed for predicting topics and sentiment.

Downsampling/pooling

Another way to summarize and reduce dimension is to locally average a
signal or image. This is called downsampling. For example, we could
break an image into 2x2 grids, and take the average or maximum value in
each grid. This would reduce the image size by a factor of 4, and would
summarize local variability in the image.

Nonlinear predictors

Once we have a feature vector x that we feel adequately compresses and
summarizes our data, the next step is building a prediction function f (x).
The simplest such predictors are linear functions of x, and linear functions
are quite powerful: all of the transformations we have thus far discussed
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Figure 1: A cartoon classification problem for polynomial classification.
Here, the blue dot denotes the center of the displayed circle.

in this chapter often suffice to arrange data such that linear decision rules
have high accuracy.

However, we oftentimes desire further expressivity brought by more
complex decision rules. We now discuss many techniques that can be used
to build such nonlinear rules. Our emphasis will highlight how most of
these operations can be understood as embedding data in spaces where
linear separation is possible. That is: we seek a nonlinear transformation of
the feature vector so that linear prediction works well on the transformed
features.

Polynomials

Polynomials are simple and natural nonlinear predictors. Consider the
dataset in the figure below. Here the data clearly can’t be separated by a
linear function, but a quadratic function would suffice. Indeed, we’d just
use the rule that if (x1 − c1)

2 + (x2 − c2)
2 ≤ c3 then (x1, x2) would have

label y = 1. This rule is a quadratic function of (x1, x2).
To fit quadratic functions, we only need to fit the coefficients of the

function. Every quadratic function can be written as a sum of quadratic
monomials. This means that we can write quadratic function estimation as
fitting a linear function to the feature vector:

Φpoly
2 (x) =

[
1 x1 x2 x2

1 x1x2 x2
2
]T

Any quadratic function can be written as wTΦpoly
2 (x) for some w. The
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map Φpoly
2 is a lifting function that transforms a set of features into a more

expressive set of features.
The features associated with the quadratic polynomial lifting function

have an intuitive interpretation as crossproducts of existing features. The
resulting prediction function is a linear combination of pairwise products
of features. Hence, these features capture co-occurrence and correlation of
a set of features.

The number of coefficients of a generic quadratic function in d dimen-
sions is (

d + 2
2

)
,

which grows quadratically with dimension. For general degree p polyno-
mials, we could construct a lifting function Φpoly

p (x) by listing all of the
monomials with degree at most p. Again, any polynomial of degree p can
be written as wTΦpoly

p (x) for some w. In this case, Φpoly
p (x) would have(

d + p
p

)
terms, growing roughly as dp. It shouldn’t be too surprising to see that as
the degree of the polynomial grows, increasingly complex behavior can be
approximated.

How many features do you need?

Our discussion of polynomials led with the motivation of creating nonlinear
decision boundaries. But we saw that we could also view polynomial
boundaries as taking an existing feature set and performing a nonlinear
transformation to embed that set in a higher dimensional space where we
could then search for a linear decision boundary. This is why we refer to
nonlinear feature maps as lifts.

Given expressive enough functions, we can always find a lift such that a
particular dataset can be mapped to any desired set of labels. How high of
a dimension is necessary? To gain insights into this question, let us stack
all of the data points x1, . . . , xn ∈ Rd into a matrix X with n rows and d
columns. The predictions across the entire dataset can now be written as

ŷ = Xw .

If the xi are linearly independent, then as long as d ≥ n, we can make
any vector of predictions y by finding a corresponding vector w. For the
sake of expressivity, the goal in feature design will be to find lifts into high
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dimensional space such that our data matrix X has linearly independent
columns. This is one reason why machine learning practitioners lean
towards models with more parameters than data points. Models with more
parameters than data points are called overparameterized.

As we saw in the analysis of the perceptron, the key quantities that
governed the number of mistakes in the perceptron algorithm were the
maximum norm of xk and the norm of the optimal w. Importantly, the
dimension of the data played no role. Designing features where w has
controlled norm is a domain specific challenge, but has nothing to do with
dimension. As we will see in the remainder of this book, high dimensional
models have many advantages and few disadvantages in the context of
prediction problems.

Basis functions

Polynomials are an example of basis functions. More generally, we can
write prediction functions as linear combinations of B general nonlinear
functions {bk}:

f (x) =
B

∑
k=1

wkbk(x)

In this case, there is again a lifting function Φbasis(x) into B dimensions
where the kth component is equal to bk(x) and f (x) = wTΦbasis(x). There
are a variety of basis functions used in numerical analysis including trigono-
metric polynomials, spherical harmonics, and splines. The basis function
most suitable for a given task is often dictated by prior knowledge in the
particular application domain.

A particularly useful set in pattern classification are the radial basis
functions. A radial basis function has the form

bz(x) = φ(‖x− z‖)
where z ∈ Rd and φ : R→ R. Most commonly,

φ(t) = e−γt2

for some γ > 0. In this case, given z1, . . . , zk, our functions take the form

fk(x) =
k

∑
j=1

wje−γ‖x−zj‖2
.

Around each anchor point zk, we place a small Gaussian bump. Combin-
ing these bumps with different weights allows us to construct arbitrary
functions.
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Figure 2: Radial Basis Function approximation of sin(x). We plot the four
Gaussian bumps that sum to approximate the function.

How to choose the zk? In low dimensions, zk could be placed on a regular
grid. But the number of bases would then need to scale exponentially with
dimension. In higher dimensions, there are several other possibilities. One
is to use the set of training data. This is well motivated by the theory of
reproducing kernels. Another option would be to pick the zk at random,
inducing random features. A third idea would be to search for the best zi.
This motivates our study of neural networks. As we will now see, all three of
these methods are powerful enough to approximate any desired function,
and they are intimately related to each other.

Kernels

One way around high dimensionality is to constrain the space of prediction
function to lie in a low dimensional subspace. Which subspace would be
useful? In the case of linear functions, there is a natural choice: the span of
the training data. By the fundamental theorem of linear algebra, any vector
in Rd can be written as sum of a vector in the span of the training data and
a vector orthogonal to all of the training data. That is,

w =
n

∑
i=1

αixi + v
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where v is orthogonal to the xi. But if v is orthogonal to every training data
point, then in terms of prediction,

wTxi =
n

∑
j=1

αjxT
j xi .

That is, the v has no bearing on in-sample prediction whatsoever. Also
note that prediction is only a function of the dot products between the
training data points. In this section, we consider a family of prediction
functions built with such observations in mind: we will look at functions
that expressly let us compute dot products between liftings of points, noting
that our predictions will be linear combinations of such lifted dot products.

Let Φ(x) denote any lifting function. Then

k(x, z) := Φ(x)TΦ(z)

is called the kernel function associated with the feature map Φ. Such kernel
functions have the property that for any x1, . . . , xn, the matrix K with entries

Kij = k(xi, xj)

is positive semidefinite. This turns out to be the key property to define
kernel functions. We say a symmetric function k : Rd ×Rd → R is a kernel
function if it has this positive semidefiniteness property.

It is clear that positive combinations of kernel functions are kernel
functions, since this is also true for positive semidefinite matrices. It is also
true that if k1 and k2 are kernel functions, then so is k1k2. This follows
because the elementwise product of two positive semidefinite matrices is
positive semidefinite.

Using these rules, we see that the function

k(x, z) = (a + bxTz)p

where a, b ≥ 0, p a positive integer is a kernel function. Such kernels are
called a polynomial kernels. For every polynomial kernel, there exists an
associated lifting function Φ with each coordinate of Φ being a monomial
such that

k(x, z) = Φ(x)TΦ(z) .

As a simple example, consider the 1-dimensional case of a kernel

k(u, v) = (1 + uv)2 .

Then k(u, v) = Φ(u)TΦ(v) for

Φ(u) =

 1√
2u

u2

 .
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We can generalize polynomial kernels to Taylor Series kernels. Suppose
that the one dimensional function h has a convergent Taylor series for
all t ∈ [−R, R]:

h(t) =
∞

∑
j=1

ajtj

where aj ≥ 0 for all j. Then the function

k(x, z) = h(〈x, z〉)

is a positive definite kernel. This follows because each term 〈x, z〉j is a
kernel, and we are taking a nonnegative combination of these polynomial
kernels. The feature space of this kernel is the span of the monomials of
degrees where the aj are nonzero.

Two example kernels of this form are the exponential kernel

k(x, z) = exp(γ〈x, z〉)

and the arcsine kernel
k(x, z) = sin−1(〈x, z〉) ,

which is a kernel for x, z on the unit sphere.
Another important kernel is the Gaussian kernel:

k(x, z) = exp
(
− γ

2 ‖x− z‖2) .

The Gaussian kernel can be thought of as first lifting data using the expo-
nential kernel then projecting onto the unit sphere in the lifted space.

We note that there are many kernels with the same feature space. Any
Taylor Series kernel with positive coefficients will have the same set of
features. The feature space associated Gaussian kernel is equivalent to the
span of radial basis functions. What distinguishes the kernels beyond the
features they represent? The key is to look at the norm. Suppose we want
to find a fit of the form

f (xj) = wTΦ(xj) for j = 1, 2, . . . , n .

In the case when Φ maps into a space with more dimensions than the num-
ber of data points we have acquired, there will be an infinite number of w
vectors that perfectly interpolate the data. As we saw in our introduction to
supervised learning, a convenient means to pick an interpolator is to choose
the one with smallest norm. Let’s see how the norm interacts with the form
of the kernel. Suppose our kernel is a Taylor series kernel

h(t) =
∞

∑
j=1

aj〈x, z〉j .
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Then the smaller aj, the larger the corresponding wj should have to be.
Thus, the aj in the kernel expansion govern how readily we allow each
feature in a least-norm fit. If we consider the exponential kernel with
parameter γ, then aj =

1
j! γ

j. Hence, for large values of γ, only low degree
terms will be selected. As we decrease γ, we allow for higher degree terms
to enter the approximation. Higher degree terms tend to be more sensitive
to perturbations in the data than lower degree ones, so γ should be set as
large as possible while still providing desirable predictive performance.

The main appeal of working with kernel representations is they translate
into simple algorithms with bounded complexity. Since we restrict our
attention to functions in the span of the data, our functions take the form

f (x) =
(
∑i αiΦ(xi)

T
)

Φ(x) = ∑i αik(xi, x) .

We can thus pose all of our optimization problems in terms of the coeffi-
cients αi. This means that any particular problem will have at most n param-
eters to search for. Even the norm of f can be computed without ever ex-
plicitly computing the feature embedding. Recall that when f (x) = wTΦ(x)
with w = ∑i αiΦ(xi), we have

‖w‖2 =
∥∥∥∑i αiΦ(xi)

∥∥∥2
= αTKα ,

where K is the matrix with ijth entry k(xi, xj). As we will see in the optimiza-
tion chapter, such representations turn out to be optimal in most machine
learning problems. Functions learned by ERM methods on kernel spaces
are weighted sums of the similarity (dot product) between the training data
and the new data. When k is a Gaussian kernel, this relationship is even
more evident: The optimal solution is simply a radial basis function whose
anchor points are given by the training data points.

Neural networks

Though the name originates from the study of neuroscience, modern neural
nets arguably have little to do with the brain. Neural nets are mathematically
a composition of differentiable functions, typically alternating between
componentwise nonlinearities and linear maps. The simplest example of a
neural network would be

f (x) = wTσ(Ax + b)

Where w and b are vectors, A is a matrix, and σ is a componentwise
nonlinearity, applying the same nonlinear function to each component of
its input.
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Figure 3: Creating a step function from ReLUs. Here, c=1/4.

The typically used nonlinearities are not Gaussian bumps. Indeed, until
recently most neural nets used sigmoid nonlinearities where σ(t) is some func-
tion that is 0 at negative infinity, 1 at positive infinity, and strictly increasing.
Popular choices of such functions include σ(t) = tanh(t) or σ(t) = 1

exp(−t)+1 .
More recently, another nonlinearity became overwhelmingly popular, the
rectified linear unit or ReLU:

σ(t) = max
{

t, 0
}

This simple nonlinearity is easy to implement and differentiate in hardware.
Though these nonlinearities are all different, they all generate similar

function spaces that can approximate each other. In fact, just as was the
case with kernel feature maps, neural networks are powerful enough to
approximate any continuous function if enough bases are used. A simple
argument by Cybenko clarifies why only a bit of nonlinearity is needed for
universal approximation.7

Suppose that we can approximate the unit step function u(t) = 1{t > 0}
as a linear combination of shifts of σ(t). A sigmoidal function like tanh is
already such an approximation and tanh(αt) converges to the unit step as α
approaches ∞. For ReLU functions we have for any c > 0 that

1
2c

max
{

t + c, 0
}
− 1

2c
max

{
t− c, 0} =


0 t < −c
1 t > c
t+c
2c otherwise

.

It turns out that approximation of such step functions is all that is needed
for universal approximation.

To see why, suppose we have a nonzero function g that is not well-
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approximated by a sum of the form

N

∑
i=1

wiσ(aT
i x + bi) .

This means that we must have a nonzero function f that lies outside the
span of sigmoids. We can take f to be the projection of g onto the orthogonal
complement of the span of the sigmoidal functions. This function f will
satisfy ∫

σ(aTx + b) f (x)dx = 0

for all vectors a and scalars b. In turn, since our nonlinearity can approxi-
mate step functions, this implies that for any a and any t0 and t1,∫

1{t0 ≤ aTx ≤ t1} f (x)dx = 0 .

We can approximate any continuous function as a sum of the indicator
function of intervals, which means∫

h(aTx) f (x)dx = 0

for any continuous function h and any vector a. Using h(t) = exp(it) proves
that the Fourier transform of f is equal to zero, and hence that f itself equals
zero. This is a contradiction.

The core of Cybenko’s argument is a reduction to approximation in one
dimension. From this perspective, it suffices to find a nonlinearity that
can well-approximate “bump functions” which are nearly equal to zero
outside a specified interval and are equal to 1 at the center of the interval.
This opens up a variety of potential nonlinearities for use as universal
approximators.

While elegant and simple, Cybenko’s argument does not tell us how
many terms we need in our approximation. More refined work on this topic
was pursued in the 1990s. Barron8 used a similar argument about step
functions combined with a powerful randomized analysis due to Maurey.9

Similar results were derived for sinusoids10 by Jones and ReLU networks11

by Breiman. All of these results showed that two-layer networks sufficed for
universal approximation, and quantified how the number of basis functions
required scaled with respect to the complexity of the approximated function.

Random features

Though the idea seems a bit absurd, a powerful means of choosing basis
function is by random selection. Suppose we have a parametric family
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of basis functions b(x; ϑ). A random feature map chooses ϑ1, . . . , ϑD from
some distribution on ϑ, and use the feature map

Φrf(x) =


b(x; ϑ1)
b(x; ϑ2)

...
b(x; ϑD)

 .

The corresponding prediction functions are of the form

f (x) =
D

∑
k=1

wkb(x; ϑk)

which looks very much like a neural network. The main difference is a mat-
ter of emphasis: here we are stipulating that the parameters ϑk are random
variables, whereas in neural networks, ϑk would be considered parameters
to be determined by the particular function we aim to approximate.

Why might such a random set of functions work well to approximate
complex functional behavior? First, from the perspective of optimization, it
might not be too surprising that a random set of nonlinear basis functions
will be linearly independent. Hence, if we choose enough of them, we
should be able to fit any set of desired labels.

Second, random feature maps are closely connected with kernel spaces.
The connections were initially drawn out in work by Rahimi and Recht.12, 13

Any random feature map generates an empirical kernel, Φrf(x)TΦrf(z). The
expected value of this kernel can be associated with some Reproducing
Kernel Hilbert Space.

E[ 1
D Φrf(x)TΦrf(z)] = E

[
1
D

D

∑
k=1

b(x; ϑk)b(z; ϑk)

]
= E[b(x; ϑ1)b(z; ϑ1)] =

∫
p(ϑ)b(x; ϑ)b(z; ϑ)dϑ

In expectation, the random feature map yields a kernel given by the final
integral expressions. There are many interesting kernels that can be written
as such an integral. In particular, the Gaussian kernel would arise if

p(ϑ) = N (0, γI)

b(x; ϑ) = [cos(ϑTx), sin(ϑTx)]

To see this, recall that the Fourier transform of a Gaussian is a Gaussian,
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and write:

k(x, z)

= exp(−γ
2 ‖x− z‖2)

=
1

(2πγ)d/2

∫
e−
‖v‖2

2γ exp(ivT(x− z))dv

=
1

(2πγ)d/2

∫
e−
‖v‖2

2γ

{
cos(vTx) cos(vTz) + sin(vTx) sin(vTz)

}
dv .

This calculation gives new insights into the feature space associated with a
Gaussian kernel. It shows that the Gaussian kernel is a continuous mixture
of inner products of sines and cosines. The sinusoids are weighted by
a Gaussian function on their frequency: high frequency sinusoids have
vanishing weight in this expansion. The parameter γ controls how quickly
the higher frequencies are damped. Hence, the feature space here can be
thought of as low frequency sinusoids. If we sample a frequency from a
Gaussian distribution, it will be low frequency (i.e., have small norm) with
high probability. Hence, a random collection of low frequency sinusoids
approximately spans the same space as that spanned by a Gaussian kernel.

If instead of using sinusoids, we chose our random features to be ReLU(vTx),
our kernel would become

k(x, z) =
1

(2π)d/2

∫
exp

(
−‖v‖

2

2

)
ReLU(vTx)ReLU(vTz)dv

= ‖x‖‖z‖ {sin(ϑ) + (π − ϑ) cos(ϑ)} ,

where

ϑ = cos−1
( 〈x, z〉
‖x‖‖z‖

)
.

This computation was first made by Cho and Saul.14 Both the Gaussian
kernel and this “ReLU kernel” are universal Taylor kernels, and, when
plotted, we see even are comparable on unit norm data.

Prediction functions built with random features are just randomly wired
neural networks. This connection is useful for multiple reasons. First,
as we will see in the next chapter, optimization of the weights wk is far
easier than joint optimization of the weights and the parameters ϑ. Second,
the connection to kernel methods makes the generalization properties of
random features straightforward to analyze. Third, much of the recent
theory of neural nets is based on connections between random feature
maps and the randomization at initialization of neural networks. The main
drawback of random features is that, in practice, they often require large
dimensions before they provide predictions on par with neural networks.
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Figure 4: Comparison of the Gaussian and Arccosine Kernels. Plotting the
kernel value as a function of the angle between two unit norm vectors.

These tradeoffs are worth considering when designing and implementing
nonlinear prediction functions.

Returning to the radial basis expansion

f (x) =
k

∑
j=1

wje−γ‖x−zj‖2
,

we see that this expression could be a neural network, a kernel machine,
or a random feature network. The main distinction between these three
methods is how the zj are selected. Neural nets search require some sort of
optimization procedure to find the zj. Kernel machines place the zj on the
training data. Random features select zj at random. The best choice for any
particular prediction problem will always be dictated by the constraints of
practice.

Chapter notes

To our knowledge, there is no full and holistic account of measurement and
quantization, especially when quantization is motivated by data science
applications. From the statistical signal processing viewpoint, we have a full
and complete theory of quantization in terms of understanding what signals
can be reconstructed from digital measurements. The Nyquist-Shannon

18



theory allows us to understand what parts of signals may be lost and what
artifacts are introduced. Such theory is now canon in undergraduate courses
on signal processing. See, e.g., Oppenheim and Willsky.15 For task-driven
sampling, the field remains quite open. The theory of compressive sensing
led to many recent and exciting developments in this space, showing that
task-driven sampling where we combined domain knowledge, computation,
and device design could reduce the data acquisition burdens of many
pattern recognition tasks.16 The theory of experiment design and survey
design has taken some cues from task-driven sampling.

Reproducing kernels have been used in pattern recognition and machine
learning for nearly as long as neural networks. Kernels and Hilbert spaces
were first used in time series prediction in the late 1940s, with fundamental
work by Karhunen–Loève showing that the covariance function of a time
series was a Mercer Kernel.17, 18 Shortly thereafter, Reproducing Kernel
Hilbert Spaces were formalized by Aronszajn in 1950.19 Parzen was likely
the first to show that time series prediction problem could be reduced to
solving a least-squares problem in an RKHS and hence could be computed
by solving a linear system.20 Wahba’s survey of RKHS techniques in statis-
tics covers many other developments post-Parzen.21 For further reading on
the theory and application of kernels in machine learning consult the texts
by Schölkopf and Smola22 and Shawe-Taylor and Cristianini.23

Also since its inception, researchers have been fascinated by the ap-
proximation power of neural networks. Rosenblatt discussed properties
of universal approximation in his monograph on neurodynamics.24 It was
in the 80s when it became clear that though neural networks were able
to approximate any continuous function, they needed to be made more
complex and intricate in order to achieve high quality approximation. Cy-
benko provided a simple proof that neural nets were dense in the space of
continuous functions, though did not estimate how large such networks
might need to be.7 An elegant, randomized argument by Maurey9 led to a
variety of approximation results which quantified how many basis terms
were needed. Notably, Jones showed that a simple greedy method could
approximate any continuous function with a sum of sinusoids.10 Barron
shows that similar greedy methods could be used8 to build neural nets that
approximated any function. Breiman analyzed ReLU networks using the
same framework.11 The general theory of approximation by bases is rich,
and a Pinkus’ book details some of the necessary and sufficient conditions
to achieve high quality approximations with as few bases as possible.25

That randomly wired neural networks could solve pattern recognition
problems also has a long history. Minsky’s first electronic neural network,
SNARC, was randomly wired. The story of SNARC (Stochastic Neural Ana-
log Reinforcement Calculator) is rather apocryphal. There are no known
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photographs of the assembled device, although a 2019 article by Akst has a
picture of one of the “neurons”.26 The commonly referenced publication,
a Harvard technical report, appears to not be published. However, the
“randomly wired” story lives on, and it is one that Minsky told countless
times through his life. Many years later, Rahimi and Recht built upon the
approximation theory of Maurey, Barron, and Jones to show that random
combinations of basis functions could approximate continuous functions
well, and that such random combinations could be thought of as approxi-
mately solving prediction problems in a RKHS.13, 12, 27 This work was later
used as a means to understand neural networks, and, in particular, the
influence of their random initializations. Daniely et al. computed the kernel
spaces associated with that randomly initialized neural networks,28 and Ja-
cot et al. pioneered a line of work using kernels to understand the dynamics
of neural net training.29

There has been noted cultural tension between the neural-net and kernel
“camps.” For instance, the tone of the introduction of work by Decoste and
Schölkopf telegraphs a disdain by neural net proponents of the Support
Vector Machine.30

Initially, SVMs had been considered a theoretically elegant spin-
off of the general but, allegedly, largely useless VC-theory of
statistical learning. In 1996, using the first methods for incorpo-
rating prior knowledge, SVMs became competitive with the state
of the art in the handwritten digit classification benchmarks that
were popularized in the machine learning community by AT&T
and Bell Labs. At that point, practitioners who are not interested
in theory, but in results, could no longer ignore SVMs.

With the rise of deep learning, however, there are a variety of machine
learning benchmarks where SVMs or other kernel methods fail to match
the performance of neural networks. Many have dismissed kernel methods
as a framework whose time has past. However, kernels play an evermore
active role in helping to better understand neural networks and insights
from deep learning have helped to improve the power of kernel methods
on pattern recognition tasks.31 Neural nets and kernels are complementary,
and active research in machine learning aims to bring these two views more
closely together.
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