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Mathematical background

The main mathematical tools of machine learning are optimization
and statistics. At their core are concepts from multivariate calculus and
probability. Here, we briefly review some of the concepts from calculus and
probability that we will frequently make use of in the book.

Common notation

• Lowercase letters u, v, w, x, y, z, typically denote vectors. We use both
〈u, v〉 and uTv to denote the inner product between vectors u and v.

• Capital letters X, Y, Z typically denote random variables.
• The conditional probability P[A | B] of an event A conditional on an

event B
• The gradient ∇ f (x) of a function f : Rd → R at a point x ∈ Rd refers

to the vector of partial derivatives of f evaluated at x.
• Identity matrix I
• The first k positive integers [k] = {1, 2, . . . , k}.

Multivariable calculus and linear algebra

Positive definite matrices

Positive definite matrices are central to both optimization algorithms and
statistics. In this section, we quickly review some of the core properties that
we will use throughout the book.

A matrix M is positive definite (pd) if it is symmetric M = MT and zT Mz >
0 for all nonzero z ∈ Rd. We denote this as M � 0 A matrix M is positive
semidefinite (psd) if it is symmetric and zT Mz ≥ 0 for all nonzero z. We
denote this as M � 0. All pd matrices are psd, but not vice versa.

Some of the main properties of positive semidefinite matrices include.

1. If M1 � 0, and M2 � 0, then M1 + M2 � 0.

2. a ∈ R, a ≥ 0 implies aM � 0.
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3. For any matrix F, FFT and FTF are both psd. Conversely, if M is psd
there exists an F such that M = FFT.

Note that (1) and (2) still hold if “psd” is replaced with “pd.” That is, the
sum of two pd matrices is pd. And multiplying a pd matrix by a positive
scalar preserves positive definiteness.

Recall that λ is an eigenvalue of a square matrix M if there exists a
nonzero x ∈ Rd such that Mx = λx. Eigenvalues of psd matrices are all
non-negative. Eigenvalues of pd matrices are all positive. This follows by
multiplying the equation Ax = λx on the left by xT.

Gradients, Taylor’s Theorem and infinitesimal approximation

Let Φ : Rd → R. Recall from multivariable calculus that the gradient of Φ at
a point w is the vector of partial derivatives

∇Φ(w) =


∂Φ(w)

∂x1
∂Φ(w)

∂x2
...

∂Φ(w)
∂xd

 .

Sometimes we write ∇xΦ(w) to make clear which functional argument we
are referring to.

One of the most important theorems in calculus is Taylor’s Theorem,
which allows us to approximate smooth functions by simple polynomials.
The following simplified version of Taylor’s Theorem is used throughout
optimization. This form of Taylor’s theorem is sometimes called the multi-
variable mean-value theorem. We will use this at multiple points to analyze
algorithms and understand the local properties of functions.

Theorem 1. Taylor’s Theorem.

• If Φ is continuously differentiable, then, for some t ∈ [0, 1] ,

Φ(w) = Φ(w0) +∇Φ(tw + (1− t)w0)
T(w− w0) .

• If Φ is twice continuously differentiable, then

∇Φ(w) = ∇Φ(w0) +
∫ 1

0
∇2Φ(tw + (1− t)w0)(w− w0)dt

and, for some t ∈ [0, 1]

Φ(w) = Φ(w0) +∇Φ(w0)
T(w− w0)

+
1
2
(w− w0)

T∇2Φ(tw + (1− t)w0)
T(w− w0) .
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Taylor’s theorem can be used to understand the local properties of
functions. For example,

Φ(w + εv) = Φ(w) + ε∇Φ(w)Tv +
ε2

2
vT∇2Φ(w + δv)Tv

for some 0 ≤ δ ≤ ε. This expression states that

Φ(w + εv) = Φ(w) + ε∇Φ(w)Tv + Θ(ε2) ,

So to first order, we can approximate Φ by a linear function.

Jacobians and the multivariate chain rule

The matrix of first order partial derivatives of a multivariate mapping Φ : Rn →
Rm is called Jacobian matrix. We define the Jacobian of Φ with respect to a
variable x evaluated at a value w as the m× n matrix

DxΦ(w) =

[
∂Φi(w)

∂xj

]
i=1...m,j=1...n

.

The i-th row of the Jacobian therefore corresponds to the transpose of
the familiar gradient ∇T

x Φi(w) of the i-th coordinate of Φ. In particular,
when m = 1 the Jacobian corresponds to the transpose of the gradient.

The first-order approximation given by Taylor’s theorem directly extends
to multivariate functions via the Jacobian matrix. So does the chain rule
from calculus for computing the derivatives of function compositions.

Let Φ : Rn → Rm and Ψ : Rm → Rk. Then, we have

DxΨ ◦Φ(w) = DΦ(w)Ψ(Φ(w))DxΦ(w) .

As we did with the gradient notation, when the variable x is clear from
context we may drop it from our notation and write DΦ(w)

Probability

Contemporary machine learning uses probability as its primary means of
quantifying uncertainty. Here we review some of the basics we will make
use of in this course. This will also allow us to fix notation.

We note that often times, mathematical rigor gets in the way of explain-
ing concepts. So we will attempt to only introduce mathematical machinery
when absolutely necessary.
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Probability is a function on sets. Let X denote the sample set. For
every A ⊂ X , we have

0 ≤ P[A] ≤ 1 , P[X ] = 1 , P[∅] = 0 ,

and
P[A ∪ B] + P[A ∩ B] = P[A] + P[B] .

This implies that
P[A ∪ B] = P[A] + P[B] .

if and only if P[A ∩ B] = 0. We always have the inequality

P[A ∪ B] ≤ P[A] + P[B] .

By induction, we get the union bound

P [
⋃

i Ai] ≤ ∑i P[Ai] .

Random variables and vectors

Random variables are a particular way of characterizing outcomes of ran-
dom processes. We will use capital letters like X, Y, and Z to denote such
random variables. The sample space of a random variable will be the set
where a variable can take values. Events are simply subsets of possible
values. Common examples we will encounter in this book are

• Probability that a random variable has a particular value. This will
be denoted as P[X = x]. Note here that we use a lower case letter to
denote the value that the random variable might take.

• Probability that a random variable satisfies some inequality. For
example, the probability that X is less than a scalar t will be denoted
as P[X ≤ t].

A random vector is a random variable whose sample space consists of Rd.
We will not use notation to distinguish between vectors and scalars in this
text.

Densities

Random vectors are often characterized by probability densities rather than
by probabilities. The density p of a random variable X is defined by its
relation to probabilities of sets:

P[X ∈ A] =
∫

x∈A
p(x)dx .
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Expectations

If f is a function on Rd and X is a random vector, then the expectation of f
is given by

E[ f (X)] =
∫

f (x)p(x)dx

If A is a set, the indicator function of the set is the function

IA(x) =

{
1 if x ∈ A
0 otherwise

Note that the expectation of an indicator function is a probability:

E[IA(X)] =
∫

x∈A
p(x)dx = P[X ∈ A] .

This expression links the three concepts of expectation, density, and proba-
bility together.

Note that the expectation operator is linear:

E[a f (X) + bg(X)] = a E[ f (X)] + b E[g(x)] .

Two other important expectations are the mean and covariance. The
mean of a random variable is the expected value of the identity function:

µX := E[X] =
∫

xp(x)dx .

The covariance of a random variable is the matrix

ΣX := E[(X− µX)(X− µX)
T] .

Note that covariance matrices are positive semidefinite. To see this, take a
nonzero vector z and compute

zTΣXz := E[zT(X− µX)(X− µX)
Tz] = E[((X− µX)

Tz)2] .

Since the term inside the expectation is nonnegative, the expectation is
nonnegative as well.

Important examples of probability distributions

• Bernoulli random variables. A Bernoulli random variable X can take
two values, 0 and 1. In such a case P[X = 1] = 1−P[X = 0]
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• Gaussian random vectors. Gaussian random vectors are the most
ubiquitous real valued random vectors. Their densities are parameter-
ized only by their mean and covariance:

p(x) =
1

det(2πΣ)1/2 exp
(
−1

2(x− µX)
TΣ−1(x− µX)

)
.

Gaussian random variables are often called “normal” random vari-
ables. We denote the distribution of a normal random variable with
mean µ and covariance Σ as

N (µ, Σ) .

The reason Gaussian random variables are ubiquitous is because of
the central limit theorem: averages of many independent random
variables tend to look like Gaussian random variables.

Conditional probability and Bayes’ Rule

Conditional probability is applied quite cavalierly in machine learning. It’s
actually very delicate and should only be applied when we really know
what we’re doing.

P[A|B] = P[A ∩ B]
P[B]

A and B are said to be independent if P[A|B] = P[A]. Note that from the
definition of conditional probability A and B are independent if and only if

P[A ∩ B] = P[A]P[B] .

Bayes’ Rule is an immediate corollary of the definition of conditional
probability. In some sense, it’s just a restatement of the definition.

P[A|B] = P[B|A]P[A]

P[B]

This is commonly applied when A is one of a set of several alternatives.
Suppose Ai are a collection of disjoint sets such that ∪i Ai = X then for
each i, Bayes’ Rule states

P[Ai|B] =
P[B|Ai]P[Ai]

∑j P[B|Aj]P[Aj]
.

This shows that if we have models of the likelihood of B under each alter-
native Ai and if we have beliefs about the probability of each Ai, we can
compute the probability of observing Ai under the condition that B has
occurred.
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Conditional densities

Suppose X and Z are random variables whose joint distribution is continu-
ous. If we try to write down the conditional distribution for X given Z = z,
we find

P[X ∈ A|Z = z] = P[X ∈ A ∩ Z = z]
P[Z = z]

Both the numerator and denominator are equal to zero. In order to have a
useful formula, we can appeal to densities.

P[x ∈ A|z ≤ Z ≤ z + ε] =

∫ z+ε
z

∫
x∈A p(x, z′)dxdz′∫ z+ε
z p(z′)dz′

≈
ε
∫

x∈A p(x, z)
εp(z)dz

=
∫

x∈A

p(x, z)
p(z)

dx

Letting ε go to zero, this calculation shows that we can use the conditional
density to compute the conditional probabilities of X when Z = z:

p(x|z) :=
p(x, z)
p(z)

.

Conditional expectation and the law of iterated expectation

Conditional expectation is short hand for computing expected values with
respect to conditional probabilities:

E[ f (x, z)|Z = z] =
∫

f (x, z)p(x|z)dx

An important formula is the law of iterated expectation:

E[ f (x, z)] = E[E[ f (x, z)|Z = z]]

This formula follows because

E[ f (x, z)] =
∫ ∫

f (x, z)p(x, z)dxdz

=
∫ ∫

f (x, z)p(x|z)p(z)dxdz

=
∫ (∫

f (x, z)p(x|z)dx
)

p(z)dz .
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Estimation

This book devotes much of its attention to probabilistic decision making. A
different but related statistical problem is parameter estimation. Assuming
that data X is generated by a statistical model, we’d like to infer some
nonrandom property about its distribution. The most canonical examples
here would be estimating the mean or variance of the distribution. Note
that estimating these parameters has a different flavor than decision theory.
In particular, our framework of risk minimization no longer applies.

If we aim to minimize a functional

minimize f E[loss(ϑ, f (x))]

then the optimal choice is to set f (x) = ϑ. But we don’t know this parameter
in the first place. So we end up with an algorithm that’s not implementable.

Instead, what we do in estimation theory is pose a variety of plausible
estimators that might work for a particular parameter and consider the
efficacy of these parameters in different settings. In particular, we’d like
estimators that take a set of observations S = (x1, . . . , xn) and return a guess
for the parameter whose value improves as n increases:

lim
n→∞

E
S
[loss(ϑ, ϑ̂(S))] = 0

Even though estimators are constructed from data, their design and
implementation require a good deal of knowledge about the underlying
probability distribution. Because of this, estimation is typically considered
to be part of classical statistics and not machine learning. Estimation
theory has a variety of powerful tools that are aimed at producing high
quality estimators, and is certainly worth learning more about. We need
rudimentary elements of estimation to understand popular baselines and
algorithms in causal inference and reinforcement learning.

Plug-in Estimators

We will restrict our attention to plug-in estimators. Plug-in estimators are
functions of the moments of probability distributions. They are plug-in
because we replace the true distribution with the empirical distribution.
To be precise, suppose there exist vector valued functions g and ψ such
that ϑ = g(E[ψ(x)]). Then, given a dataset, S = (x1, . . . , xn), the associated
plug-in estimator of ϑ is

ϑ̂(S) = g

(
1
n

n

∑
i=1

ψ(xi)

)
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that is, we replace the expectation with the sample average. There are
canonical examples of plugin estimators.

1. The sample mean. The sample mean is the plug-in estimator where g
and ψ are both the identity functions.

2. The sample covariance. The sample covariance is

Σ̂x =
n

∑
i=1

xixT
i −

(
1
n

n

∑
i=1

xi

)(
n

∑
i=1

xi

)T

.

From this formula, we can take

ψ(x) =
[

1
x

] [
1
x

]T

and g
([

A B
BT C

])
= C− BBT .

3. Least-squares estimator. Suppose we have three random vectors, y, x,
and v and we assume that v and x are zero-mean and uncorrelated
and that y = Ax + v for some matrix A. Let’s suppose we’d like to
estimate A from a set of pairs S = ((x1, y1), . . . , (xn, yn)). One can
check that

A = ΣyxΣ−1
x .

And hence the plug-in estimator would use the sample covariances:

Â =

(
n

∑
i=1

yixT
i

)(
n

∑
i=1

xixT
i

)−1

In this case, we have the formulation

ψ(x) =
[

x
y

] [
x
y

]T

and g
([

A B
BT C

])
= BA−1 .

Convergence rates

In our study of generalization, we reasoned that the empirical risk should be
close to the true risk because sample averages should be close to population
values. A similar reasoning holds true for plug-in estimators: smooth func-
tions of sample averages should be close to their population counterparts.

We covered the case of the sample mean in our discussion of general-
ization. To recall, suppose x is a Bernoulli random variable with mean p.
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Let x1, . . . , xn be independent and identically distributed as x. Then Hoeffd-
ing’s inequality states that

P

[∣∣∣∣∣ 1n n

∑
i=1

xi − p

∣∣∣∣∣ > ε

]
≤ 2 exp(−2nε2) .

Or, in other words, with probability 1− δ,∣∣∣∣∣ 1n n

∑
i=1

xi − p

∣∣∣∣∣ ≤
√

log(2/δ)

2n
.

Let’s consider a simple least-squares estimator. Suppose we know
that y = wTx + v where w and x are a vectors, w is deterministic, and x
and v are uncorrelated. Consider the least-squares estimator ŵS from n data
points.. The estimation error in w is the vector eS = ŵS−w. The expectation
of eS is zero and the expected norm of the error is given by

E

[
‖eS‖2

]
= Trace

( n

∑
i=1

xixT
i

)−1
 .

This error is small if the sample covariance has large eigenvalues. Indeed,
if λS denotes the minimum eigenvalue of the sample covariance of x, then

E

[
‖eS‖2

]
≤ d

nλS
.

This expression suggests that the distribution of x must have density that
covers all directions somewhat equally in order for the least-squares esti-
mator to have good performance. On top of this, we see that the squared
error decreases roughly as d/n. Hence, we need far more measurements
than dimensions to find a good estimate of w. This is in contrast to what we
studied in classification. Most of the generalization bounds for classification
we derived were dimension free and only depended on properties like the
margin of the data. In contrast, in parameter estimation, we tend to get
results that scale as number of parameters over number of data points.
This rough rule of thumb that the error scales as the ratio of number of
parameters to number of data points tends to be a good guiding principle
when attempting to understand convergence rates of estimators.
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